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3.3

 Threads vs processos
 Llibreries de gestió de threads
 Comunicació entre threads: memòria compartida
 Pthreads sobre Linux

Índex
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THREADS VS PROCESSOS
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 Recordem: un procés és la representació del SO d’un programa en execució.
 Fins ara, hem vist que cada procés només té un “fil d’execució”, és a dir, que només pot 

estar executant una sola cosa alhora, però:

 Entre els recursos que pot gestionar un procés, estan els fils d’execució (threads).
 Un thread és una instància o flux d’execució d’un procés, i és la unitat mínima 

d’execució i planificació del SO (la mínima unitat a la que se li pot assignar temps de 
CPU)
4Cada part del codi que es pot executar de forma independent es podria assignar a un 

thread
 Un thread té assignat el context necessari per representar un flux d’execució 

d’instruccions:
4 Identificador (Thread ID: TID)
4Punter a la pila (Stack Pointer)
4Punter a la següent instrucció (Program Counter)
4Registres (Register File)
4Variables locals del thread (per exemple, errno).

Fils d’execució - Threads
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 Tots els threads d’un mateix procés comparteixen els recursos d’aquest:
 Mateix PCB, i per tant…
 Mateixa memòria
 Mateixos dispositius d’entrada/sortida, fitxers oberts, signal handlers, etc.

Fils d’execució - Threads
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 Al principi de l’execució, un procés té un sol thread.
 Un procés pot tenir diversos threads:

 Un videojoc actual pot tenir > 50 threads. Chrome / Firefox pot tenir > 80 
threads.

 La gestió de processos amb diversos threads dependrà del suport del SO
 User Level Threads vs Kernel Level Threads

 A la figura següent tenim tres processos diferents: P1 amb 2 threads, P2 
amb 4 threads i P3 amb un sol thread

Fils d’execució - Threads

7
KERNEL

Crides a Sistema
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 Per a què serveixen?
 Permeten explotar paral·lelisme en un mateix procés (de codi i de recursos)
 Encapsulen tasques (programació modular)
 Eficiència en entrada/sortida (es poden delegar operacions)
 Pipelining de serveis en servidors (per mantenir temps de resposta)

 Avantatges
 Els threads són més barats de crear, finalitzar i canviar de context (dintre d’un 

procés) que els processos
 Al compartir memòria entre threads es poden comunicar sense usar crides a 

sistema
 Inconvenients

 Complexos de programar i debugar per la memòria compartida
4S’han de solventar problemes de sincronització i exclusió mútua: 

execucions incoherents, resultats erronis, deadlocks, etc.

Fils d’execució - Threads
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enviar_petició(p);
esperar_resposta(p);

Cas d’ús: servidor web
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while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

Clients Servidor

1

2

3

N
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Si tenim un sol procés, només podem gestionar una petició alhora:

Cas d’ús: servidor web

Però, per fer-ho amb múltiples processos, hauríem de replicar la memòria del 
servidor, establir mecanismes de comunicació, etc. 
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Rebre petició Gestionar petició Enviar resposta

P1

Temps

Petició 1 Petició 2 Petició 3 Petició N

…
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enviar_petició(p);
esperar_resposta(p);

Cas d’ús: servidor web
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for (int i = 0; i < 4; ++i) {
crear_fil_d’execució();

}

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

Clients
Servidor

1

2

3

N

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

El mateix procés executa quatre fils en 
paral·lel, que poden gestionar peticions
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Cas d’ús: servidor web
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Rebre petició Gestionar petició Enviar resposta

P1 Thread 1

Temps

Petició 1

Petició 2

Petició 3

P1 Thread 2

P1 Thread 3

Això és el que podem aconseguir amb els 
processos multifil (o multithreaded)
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La diferència principal entre processos i threads és que els segons 
comparteixen la memòria:

 Entre processos, cadascun té una còpia privada de les dades globals i cap 
altre procés hi pot accedir

 Entre threads, tots els fils tenen accés a la mateixa memòria (tota la del 
procés)
 El que si té cada thread és un stack/pila propi, així com els registres, però 

res impedeix que accedeixi a la memòria dels stacks dels altres threads

Processos vs Threads
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GESTIÓ DE THREADS
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La llibreria més utilitzada per crear i gestionar fils d’execució és la llibreria de 
threads de POSIX, també coneguts com Pthreads.

Ens proporciona interfícies per:

 Crear i destruir fils d’execució
 Sincronitzar els fils entre si
 Crear regions d’exclusió mútua

* Val la pena mencionar que a partir de C++11 existeix una interfície fins a cert punt equivalent a C++, que és 
std::thread. És habitual que certs llenguatges de programació tinguin les seves pròpies interfícies de 
threads, tot i que quasi tots acaben usant POSIX threads per sota

POSIX Threads
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Gestió de fils
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Operació Processos Threads

Creació fork() pthread_create()

Identificació getpid() pthread_self()

Finalització exit() pthread_exit()

Sincronització final waitpid() pthread_join()
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pthread_create() inicia un nou thread que executarà la funció start_routine amb 
l’argument arg.

 th: paràmetre de sortida, contindrà l’identificador del nou thread
 attr: opcional, indica atributs addicionals del nou thread
 start_routine: funció que ha d’executar el nou thread
 arg: argument que se li passarà a la funció start_routine (com a void *)

La funció retorna 0 (si no hi ha error) o un error.

pthread_create
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Específic
per
Linux

#include <pthread.h>

int pthread_create(pthread_t *th, pthread_attr_t 
*attr, void *(*start_routine)(void *), void *arg);

man 3 pthread_create
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pthread_self() retorna l’identificador del thread actual.

Aquesta funció mai retorna error.

pthread_self
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Específic
per
Linux

#include <pthread.h>

pthread_t pthread_self(void);

man 3 pthread_self
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L’ha de cridar el thread que vol finalitzar, i té l’efecte de finalitzar l’execució del 
flux. El paràmetre retval serà el valor de retorn del pthread, i podrà ser 
consultat a través de la crida pthread_join.

Cridar pthread_exit() té exactament el mateix efecte que fer un return de la 
funció start_routine d’un thread.

Aquesta rutina no retorna, ni té valor de retorn.

pthread_exit
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Específic
per
Linux

#include <pthread.h>

void pthread_exit(void *retval);

man 3 pthread_exit
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pthread_join() bloqueja l’execució del flux que la crida fins que thread crida a 
pthread_exit() o acaba d’executar la seva rutina. Després de la crida, *retval
contindrà el valor de retorn del thread que ha finalitzat la seva execució. Si el 
paràmetre retval és NULL, s’ignora.

La funció retorna 0 (si no hi ha error) o un error.

pthread_join

20

Específic
per
Linux

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

man 3 pthread_join
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#include <pthread.h>
#include <stdio.h>

void *rutina(void *arg)
{

printf("Hola del thread %ld (id: %p)\n", (long) arg, pthread_self());
return arg;

}

int main()
{

pthread_t threads[2];
long ret;
// Creem el primer thread
pthread_create(&threads[0], NULL, rutina, (void *) 1);
printf("Espero...\n");
pthread_join(threads[0], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);
// Creem el segon thread
pthread_create(&threads[1], NULL, rutina, (void *) 2);
printf("Espero...\n");
pthread_join(threads[1], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);

}

Exemple
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Específic
per
Linux

https://godbolt.org/z/55YKTbc4n

https://godbolt.org/z/55YKTbc4n
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COMUNICACIÓ ENTRE THREADS: 
MEMÒRIA COMPARTIDA
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Com que tots els threads d’un procés comparteixen la mateixa memòria, s’hi 
poden comunicar a través d’ella

 Per exemple, modificant i llegint de la mateixa variable

No obstant, hi ha un problema comú que resulta de l’ús simultani de la 
memòria:

 Les condicions de carrera o race condition, que es produeixen quan dos 
o més threads modifiquen la mateixa posició de memòria sense veure la 
modificació de l’altre, provocant un resultat final incorrecte.

Comunicació entre threads
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Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}
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Thread 1 Thread 2

Aquestes operacions poden passar 
en qualsevol ordre, si no fem res

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}
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Condició de carrera

1.if (primer) {
2.} else {
3. tasca_2();
4.}
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Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();

1 0

Depèn de l’ordre, podem obtenir una execució correcta, 
com aquesta, en que cada thread fa la seva tasca
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Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();
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Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();

1 1

Però en altres casos no!
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Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}
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Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}

Idealment, voldriem poder especificar regions que 
no es poden executar en dos threads alhora
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Un dels mecanismes més comuns de sincronització entre threads és el 
d’exclusió mutua (mutual exclusion). L’exclusió mutua serveix per definir 
regions de codi on no volem més d’un thread executant-se alhora (regions 
crítiques) i només permetre que entri un thread a la regió.

Implica dues operacions:

 Lock (bloqueig): marca l’inici d’una regió crítica. Si no hi ha cap thread 
executant-la, entra el primer que hi arriba. Si està ocupada, la resta 
s’esperen.

 Unlock (desbloqueig): marca el final d’una regió crítica. Si hi ha threads 
esperants per entrar-hi, es permet l’entrada a un d’ells.

Exclusió mutua
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Els mutexes implementen l’algorisme d’exclusió mutua. S’han d’inicialitzar 
abans del primer ús amb pthread_mutex_init(). Si dos threads intenten fer una 
operació de pthread_mutex_lock() sobre el mateix mutex, només un d’ells 
podrà fer-ho, i l’altre romandrà bloquejat fins que es cridi a 
pthread_mutex_unlock().

pthread_mutex
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Específic
per
Linux

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, 
pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

man 3 pthread_mutex_init
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1.pthread_mutex_lock(&l);
2.if (primer) {
3. primer = 0;
4. pthread_mutex_unlock(&l);
5. tasca_1();
6.} else {
7. pthread_mutex_unlock(&l);
8. tasca_2();
9.}

Exclusió mutua
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pthread_mutex_init(&l, NULL);
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Coses importants a tenir en compte quan usem l’exclusió mutua:

 Usar un mutex evita, fins a cert punt, l’execució paral·lela del nostre 
programa. Per tant, és interessant usar-la poc i en regions el més petites 
possible.

 La persona programadora és la responsable de trobar les regions crítiques 
del seu programa, i els errors que venen de condicions de carrera són 
difícils de trobar i a vegades inclús de reproduïr.

 Podem definir diferents mutexes per diferents regions crítiques (i és 
recomanable fer-ho).

Exclusió mutua
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