TS: Multithreading

SISTEMES OPERATIUS
GRAU EN ENGINYERIA INFORMATICA

Autors: Professors de Sistemes Operatius del
Departament d’Arquitectura de Computadors
(UPC- BarcelonaTech)

UNIVERSITAT POLITECNICA DE CATALUNYA . . "
BARCELONATECH Grau en Enginyeria Informatica
Facultat d’Informatica de Barcelona

Llicencia

©@®SOCC BY-NC-SA 4.0
Reconeixement-NoComercial-
Compartirigual 4.0

Internacional
Deed

«By Universitat Politecnica de Catalunya - BarcelonaTech (UPC), Any 2025»

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ca

Index

B Threads vs processos

M Llibreries de gestid de threads

B Comunicaci6 entre threads: memoria compartida
B Pthreads sobre Linux

O

THREADS VS PROCESSOS

Fils d’execucio - Threads

B Recordem: un proceés és la representacié del SO d’un programa en execucio.

B Fins ara, hem vist que cada procés nomes té un “fil d’execucic”, és a dir, que només pot
estar executant una sola cosa alhora, pero:

B Entre els recursos que pot gestionar un procés, estan els fils d’execucié (threads).

® Un thread és una instancia o flux d’execucié d’un procés, i és la unitat minima
d’execucio i planificacié del SO (la minima unitat a la que se li pot assignar temps de
CPU)

» Cada part del codi que es pot executar de forma independent es podria assignar a un
thread

® Un thread té assignat el context necessari per representar un flux d’execucié
d’instruccions:

» Identificador (Thread ID: TID)

» Punter a la pila (Stack Pointer)

» Punter a la seguent instruccié (Program Counter)
» Registres (Register File)

» Variables locals del thread (per exemple, errno).

3.5

Fils d’execucio - Threads

B Tots els threads d’un mateix procés comparteixen els recursos d’aquest:
® Mateix PCB, i per tant...
® Mateixa memoria

® Mateixos dispositius d’entrada/sortida, fitxers oberts, signal handlers, etc.

Codi Dades Fitxers Codi Dades Fitxers

S 1S 1S

Procés single thread Procés multi-thread

Fils d’execucio - Threads

B Al principi de I’execucid, un procés té un sol thread.
B Un procés pot tenir diversos threads:

® Un videojoc actual pot tenir > 50 threads. Chrome / Firefox pot tenir > 80
threads.

B La gesti6 de processos amb diversos threads dependra del suport del SO
® User Level Threads vs Kernel Level Threads

B A la figura seglent tenim tres processos diferents: P1 amb 2 threads, P2
amb 4 threads i P3 amb un sol thread

Procés1 Procés 2 Procés 3

SEC

\ 4

Crides a Sistema

KERNEL

3.7

Fils d’execucio - Threads

B Per a que serveixen?
® Permeten explotar paral-lelisme en un mateix procés (de codi i de recursos)
® Encapsulen tasques (programacié modular)
@ Eficiencia en entrada/sortida (es poden delegar operacions)
® Pipelining de serveis en servidors (per mantenir temps de resposta)
B Avantatges

® Els threads s6n més barats de crear, finalitzar i canviar de context (dintre d’'un
procés) que els processos

@ Al compartir memoria entre threads es poden comunicar sense usar crides a
sistema

B Inconvenients
@ Complexos de programar i debugar per la memoria compartida

» S’han de solventar problemes de sincronitzacio i exclusié mutua:
execucions incoherents, resultats erronis, deadlocks, etc.

3.8

Cas d’us: servidor web

Clients Servidor
() =,
= ' 0 =
enviar_peticio(p); o —
. esperar_resposta(p); o —
enviar_peticio(p); @ while (1) {
esperar_resposta(p); p = rebre_peticio();
gestionar_peticio(p);
_ ' L @ enviar_resposta(p);
enviar_peticio(p);)
. esperar_resposta(p);
(@]
(@]
(@]

enviar_peticio(p);
. esperar_resposta(p);

3.9

Cas d’us: servidor web

Si tenim un sol procés, només podem gestionar una peticié alhora:

P1

AN J
Y Y Y Y

Peticio 1 Peticio 2 Peticio 3 Peticio N

v

Temps

Rebre peticio . Gestionar peticio . Enviar resposta

Pero, per fer-ho amb multiples processos, hauriem de replicar la memoria del
servidor, establir mecanismes de comunicacio, etc.

3.10

10

Cas d’us: servidor web

El mateix procés executa quatre fils en
paral-lel, que poden gestionar peticions

Clients —
— g 0 ==
enviar_peticio(p); o —
. esperar_resposta(p); o —
{
s

enviar_peticio(p);
esperar_resposta(p);

for (inti=0;i<4; ++) {
crear_fil_d’execucio();

A\

}

-

enviar_peticio(p);
esperar_resposta(p);

.
[N

N
while (1) {
o p = rebre_peticio();
°) e
° gestionar_peticio(p);

\\ enviar_resposta(p);
}
A /

enviar_peticio(p);
. esperar_resposta(p);

3.1

Cas d’us: servidor web

PiThread 1| [
Peticio 1
Aix0 és el que podem aconseguir amb els
P1 Thread 2 processos multifil (o multithreaded)
Petici6 2
P1 Thread 3

2

Peticio 3

v

Temps

Rebre peticio . Gestionar peticio . Enviar resposta

12

3.12

Processos vs Threads

La diferéncia principal entre processos i threads és que els segons
comparteixen la memoria:

B Entre processos, cadascun té una copia privada de les dades globals i cap
altre procés hi pot accedir

B Entre threads, tots els fils tenen accés a la mateixa memoria (tota la del
proces)

® El que si té cada thread és un stack/pila propi, aixi com els registres, pero
res impedeix que accedeixi a la memoria dels stacks dels altres threads

13

GESTIO DE THREADS

14

POSIX Threads

La llibreria més utilitzada per crear i gestionar fils d’execucio és la llibreria de
threads de POSIX, també coneguts com Pthreads.

Ens proporciona interficies per:

B Crear i destruir fils d’execucio
B Sincronitzar els fils entre si
B Crear regions d’exclusié mutua

* Val la pena mencionar que a partir de C++11 existeix una interficie fins a cert punt equivalent a C++, que és
std::thread. Es habitual que certs llenguatges de programacio tinguin les seves propies interficies de
threads, tot i que quasi tots acaben usant POSIX threads per sota

15

3.15

Gestio de fils

Operacio Processos Threads

Creacid fork() pthread_create()
Identificacio getpid() pthread_self ()
Finalitzacio exit() pthread_exit()
Sincronitzacié final waitpid() pthread_join()

3.16

16

pthread create

man 3 pthread_create Especific

#include <pthread.h> per

Linux A e

int pthread_create(pthread_t *th, pthread_attr_t A
*attr, void *(*start_routine) (void %), void *arg); N

pthread_create() inicia un nou thread que executara la funcio start_routine amb
I'argument arg.

M th: parametre de sortida, contindra I'identificador del nou thread

M attr: opcional, indica atributs addicionals del nou thread

B start_routine: funcié que ha d’executar el nou thread

B arg: argument que se li passara a la funcio start_routine (com a void *)

La funcid retorna 0 (si no hi ha error) o un error.

17

3.17

pthread_self

man 3 pthread_self
#include <pthread.h>

pthread_t pthread_self(void);

pthread_self() retorna l'identificador del thread actual.

Aquesta funcidé mai retorna error.

Especific
per
Linux

\J

A

N

18

pthread_exit

man 3 pthread_exit [M=Se=ldiile
#include <pthread.h> oer
Linux

_ A J
L’ha de cridar el thread que vol finalitzar, i té 'efecte de finalitzar I'execucio del

flux. El parametre retval sera el valor de retorn del pthread, i podra ser
consultat a través de la crida pthread_join.

\J

void pthread_exit(void *retval);

Cridar pthread_exit() t& exactament el mateix efecte que fer un return de la
funcio start_routine d’un thread.

Aquesta rutina no retorna, ni té valor de retorn.

19

3.19

pthread join

man 3 pthread_join

#include <pthread.h> Especific
per
. . . . Linux [
int pthread_join(pthread_t thread, void **retval); y
- A J

pthread_join() bloqueja I'execucid del flux que la crida fins que thread crida a
pthread_exit() o acaba d’executar la seva rutina. Després de la crida, *retval

contindra el valor de retorn del thread que ha finalitzat la seva execucio. Si el
parametre retval és NULL, s’ignora.

La funcid retorna 0 (si no hi ha error) o un error.

20

3.20

Exemple

#include <pthread.h>
#include <stdio.h>

void *rutina(void *arg)

{
printf("Hola del thread %ld (id: %p)\n", (long) arg, pthread_self());
return arg;

}

int main()

{
pthread_t threads[2];
long ret;
// Creem el primer thread
pthread_create(&threads[0], NULL, rutina, (void *x) 1);
printf("Espero...\n");
pthread_join(threads[0], (void *x) &ret);
printf("Thread finalizado, retorna %ld\n", ret);
// Creem el segon thread
pthread_create(&threads[1], NULL, rutina, (void *x) 2);
printf("Espero...\n");
pthread_join(threads[1], (void *x) &ret);
printf("Thread finalizado, retorna %ld\n", ret);

}

3.21

Especific

21

https://godbolt.org/z/55YKTbc4n

COMUNICACIO ENTRE THREADS:
MEMORIA COMPARTIDA

22

Comunicacio entre threads

Com que tots els threads d’un procés comparteixen la mateixa memoria, s’hi
poden comunicar a través d’ella

B Per exemple, modificant i llegint de la mateixa variable

No obstant, hi ha un problema comu que resulta de I's simultani de la
memoria:

B Les condicions de carrera o race condition, que es produeixen quan dos
0 més threads modifiquen la mateixa posicid de memoria sense veure la
modificacioé de I'altre, provocant un resultat final incorrecte.

23

3.23

Condicio de carrera

Thread 1

1.if (primer) {

2. primer = 0;
3. tasca_1();
4.} else {

5. tasca_2();
6.}

Thread 2

1.if (primer) {

2. primer = 0;
3. tasca_1();
4.} else {

5. tasca_2();
6.}

en qualsevol ordre, si no fem res

[Aquestes operacions poden passar }

3.24

24

Condicio de carrera

Thread 1 Thread 2 /@

1.1f (primer) { 1.if (primer) {

2. primer = 0; 2.} else {

3. tasca_1(); 3. tasca_2();
4.}

Depén de I'ordre, podem obtenir una execuci6 correcta,
com aquesta, en que cada thread fa la seva tasca

3.25

25

Condicio de carrera

Thread 2

1.if (primer) {

Thread 1

1.1f (primer) {
2. primer = 0;
3. tasca_1();

2. primer = 0;
3. tasca_1();

[Pero en altres casos no! }

3.26

26

Condicio de carrera

Thread 1

Thread 2

1.if (primer) {

1.if (primer) {

2. primer = 0; 2. primer = 0;
3. tasca_1(); 3. tasca_1();
4.} else { 4.} else {

5. tasca_2(); 5. tasca_2();
6.} 6.}

Idealment, voldriem poder especificar regions que
no es poden executar en dos threads alhora

3.27

27

Exclusio mutua

Un dels mecanismes més comuns de sincronitzacio entre threads és el
d’exclusié mutua (mutual exclusion). L’exclusi6 mutua serveix per definir
regions de codi on no volem més d’un thread executant-se alhora (regions
critiques) i només permetre que entri un thread a la regio.

Implica dues operacions:

B Lock (bloqueig): marca l'inici d’'una regio critica. Si no hi ha cap thread
executant-la, entra el primer que hi arriba. Si esta ocupada, la resta
s’esperen.

B Unlock (desbloqueig): marca el final d’'una regio6 critica. Si hi ha threads
esperants per entrar-hi, es permet I'entrada a un d’ells.

28

UF 3.28

pthread mutex

man 3 pthread_mutex_init ¢ =
#include <pthread.h> EZICr)eCIfIC

Linux A e

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex) ;
int pthread_mutex_unlock(pthread_mutex_t *mutex) ;

Els mutexes implementen I'algorisme d’exclusido mutua. S’han d’inicialitzar
abans del primer us amb pthread_mutex_init(). Si dos threads intenten fer una
operacio de pthread_mutex_lock() sobre el mateix mutex, només un d’ells
podra fer-ho, i I'altre romandra bloquejat fins que es cridi a
pthread_mutex_unlock().

29

3.29

Exclusio mutua

pthread_mutex_init(&l, NULL);

1.pthread_mutex_lock (&l) ;

2.1f (primer) {

3 primer = 0;

4 pthread_mutex_unlock (&Ll);
5. tasca_1();

6.} else {

7 pthread_mutex_unlock(&l) ;
8 tasca_2();

9.}

UP 3.30

Exclusio mutua

Coses importants a tenir en compte quan usem I'exclusié mutua:

B Usar un mutex evita, fins a cert punt, 'execucio paral-lela del nostre
programa. Per tant, és interessant usar-la poc i en regions el més petites
possible.

B La persona programadora és la responsable de trobar les regions critiques
del seu programa, i els errors que venen de condicions de carrera son
dificils de trobar i a vegades inclus de reproduir.

B Podem definir diferents mutexes per diferents regions critiques (i és
recomanable fer-ho).

31

UF 3.31

