
3.1

Grau en Enginyeria Informàtica

T5: Multithreading

SISTEMES OPERATIUS 
GRAU EN ENGINYERIA INFORMÀTICA 

Autors: Professors de Sistemes Operatius del        
Departament d’Arquitectura de Computadors 

(UPC- BarcelonaTech)



3.2

Llicència

«By Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Any 2025»

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ca

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ca


3.3

 Threads vs processos
 Llibreries de gestió de threads
 Comunicació entre threads: memòria compartida
 Pthreads sobre Linux

Índex



3.4

THREADS VS PROCESSOS

4



3.5

 Recordem: un procés és la representació del SO d’un programa en execució.
 Fins ara, hem vist que cada procés només té un “fil d’execució”, és a dir, que només pot 

estar executant una sola cosa alhora, però:

 Entre els recursos que pot gestionar un procés, estan els fils d’execució (threads).
 Un thread és una instància o flux d’execució d’un procés, i és la unitat mínima 

d’execució i planificació del SO (la mínima unitat a la que se li pot assignar temps de 
CPU)
4Cada part del codi que es pot executar de forma independent es podria assignar a un 

thread
 Un thread té assignat el context necessari per representar un flux d’execució 

d’instruccions:
4 Identificador (Thread ID: TID)
4Punter a la pila (Stack Pointer)
4Punter a la següent instrucció (Program Counter)
4Registres (Register File)
4Variables locals del thread (per exemple, errno).

Fils d’execució - Threads

5



3.6

 Tots els threads d’un mateix procés comparteixen els recursos d’aquest:
 Mateix PCB, i per tant…
 Mateixa memòria
 Mateixos dispositius d’entrada/sortida, fitxers oberts, signal handlers, etc.

Fils d’execució - Threads

6

Codi Dades Fitxers

Registres Stack PC

Codi Dades Fitxers

Registres

Stack

PC

Registres

Stack

PC

Registres

Stack

PC

Procés single thread Procés multi-thread



3.7

 Al principi de l’execució, un procés té un sol thread.
 Un procés pot tenir diversos threads:

 Un videojoc actual pot tenir > 50 threads. Chrome / Firefox pot tenir > 80 
threads.

 La gestió de processos amb diversos threads dependrà del suport del SO
 User Level Threads vs Kernel Level Threads

 A la figura següent tenim tres processos diferents: P1 amb 2 threads, P2 
amb 4 threads i P3 amb un sol thread

Fils d’execució - Threads

7
KERNEL

Crides a Sistema

Procés 1 Procés 2 Procés 3



3.8

 Per a què serveixen?
 Permeten explotar paral·lelisme en un mateix procés (de codi i de recursos)
 Encapsulen tasques (programació modular)
 Eficiència en entrada/sortida (es poden delegar operacions)
 Pipelining de serveis en servidors (per mantenir temps de resposta)

 Avantatges
 Els threads són més barats de crear, finalitzar i canviar de context (dintre d’un 

procés) que els processos
 Al compartir memòria entre threads es poden comunicar sense usar crides a 

sistema
 Inconvenients

 Complexos de programar i debugar per la memòria compartida
4S’han de solventar problemes de sincronització i exclusió mútua: 

execucions incoherents, resultats erronis, deadlocks, etc.

Fils d’execució - Threads

8



3.9

enviar_petició(p);
esperar_resposta(p);

Cas d’ús: servidor web

9

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

Clients Servidor

1

2

3

N



3.10

Si tenim un sol procés, només podem gestionar una petició alhora:

Cas d’ús: servidor web

Però, per fer-ho amb múltiples processos, hauríem de replicar la memòria del 
servidor, establir mecanismes de comunicació, etc. 

10

Rebre petició Gestionar petició Enviar resposta

P1

Temps

Petició 1 Petició 2 Petició 3 Petició N

…



3.11

enviar_petició(p);
esperar_resposta(p);

Cas d’ús: servidor web

11

for (int i = 0; i < 4; ++i) {
crear_fil_d’execució();

}

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

enviar_petició(p);
esperar_resposta(p);

Clients
Servidor

1

2

3

N

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

El mateix procés executa quatre fils en 
paral·lel, que poden gestionar peticions



3.12

Cas d’ús: servidor web

12

Rebre petició Gestionar petició Enviar resposta

P1 Thread 1

Temps

Petició 1

Petició 2

Petició 3

P1 Thread 2

P1 Thread 3

Això és el que podem aconseguir amb els 
processos multifil (o multithreaded)



3.13

La diferència principal entre processos i threads és que els segons 
comparteixen la memòria:

 Entre processos, cadascun té una còpia privada de les dades globals i cap 
altre procés hi pot accedir

 Entre threads, tots els fils tenen accés a la mateixa memòria (tota la del 
procés)
 El que si té cada thread és un stack/pila propi, així com els registres, però 

res impedeix que accedeixi a la memòria dels stacks dels altres threads

Processos vs Threads

13



3.14

GESTIÓ DE THREADS

14



3.15

La llibreria més utilitzada per crear i gestionar fils d’execució és la llibreria de 
threads de POSIX, també coneguts com Pthreads.

Ens proporciona interfícies per:

 Crear i destruir fils d’execució
 Sincronitzar els fils entre si
 Crear regions d’exclusió mútua

* Val la pena mencionar que a partir de C++11 existeix una interfície fins a cert punt equivalent a C++, que és 
std::thread. És habitual que certs llenguatges de programació tinguin les seves pròpies interfícies de 
threads, tot i que quasi tots acaben usant POSIX threads per sota

POSIX Threads

15



3.16

Gestió de fils

16

Operació Processos Threads

Creació fork() pthread_create()

Identificació getpid() pthread_self()

Finalització exit() pthread_exit()

Sincronització final waitpid() pthread_join()



3.17

pthread_create() inicia un nou thread que executarà la funció start_routine amb 
l’argument arg.

 th: paràmetre de sortida, contindrà l’identificador del nou thread
 attr: opcional, indica atributs addicionals del nou thread
 start_routine: funció que ha d’executar el nou thread
 arg: argument que se li passarà a la funció start_routine (com a void *)

La funció retorna 0 (si no hi ha error) o un error.

pthread_create

17

Específic
per
Linux

#include <pthread.h>

int pthread_create(pthread_t *th, pthread_attr_t 
*attr, void *(*start_routine)(void *), void *arg);

man 3 pthread_create



3.18

pthread_self() retorna l’identificador del thread actual.

Aquesta funció mai retorna error.

pthread_self

18

Específic
per
Linux

#include <pthread.h>

pthread_t pthread_self(void);

man 3 pthread_self



3.19

L’ha de cridar el thread que vol finalitzar, i té l’efecte de finalitzar l’execució del 
flux. El paràmetre retval serà el valor de retorn del pthread, i podrà ser 
consultat a través de la crida pthread_join.

Cridar pthread_exit() té exactament el mateix efecte que fer un return de la 
funció start_routine d’un thread.

Aquesta rutina no retorna, ni té valor de retorn.

pthread_exit

19

Específic
per
Linux

#include <pthread.h>

void pthread_exit(void *retval);

man 3 pthread_exit



3.20

pthread_join() bloqueja l’execució del flux que la crida fins que thread crida a 
pthread_exit() o acaba d’executar la seva rutina. Després de la crida, *retval
contindrà el valor de retorn del thread que ha finalitzat la seva execució. Si el 
paràmetre retval és NULL, s’ignora.

La funció retorna 0 (si no hi ha error) o un error.

pthread_join

20

Específic
per
Linux

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

man 3 pthread_join



3.21

#include <pthread.h>
#include <stdio.h>

void *rutina(void *arg)
{

printf("Hola del thread %ld (id: %p)\n", (long) arg, pthread_self());
return arg;

}

int main()
{

pthread_t threads[2];
long ret;
// Creem el primer thread
pthread_create(&threads[0], NULL, rutina, (void *) 1);
printf("Espero...\n");
pthread_join(threads[0], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);
// Creem el segon thread
pthread_create(&threads[1], NULL, rutina, (void *) 2);
printf("Espero...\n");
pthread_join(threads[1], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);

}

Exemple

21

Específic
per
Linux

https://godbolt.org/z/55YKTbc4n

https://godbolt.org/z/55YKTbc4n


3.22

COMUNICACIÓ ENTRE THREADS: 
MEMÒRIA COMPARTIDA

22



3.23

Com que tots els threads d’un procés comparteixen la mateixa memòria, s’hi 
poden comunicar a través d’ella

 Per exemple, modificant i llegint de la mateixa variable

No obstant, hi ha un problema comú que resulta de l’ús simultani de la 
memòria:

 Les condicions de carrera o race condition, que es produeixen quan dos 
o més threads modifiquen la mateixa posició de memòria sense veure la 
modificació de l’altre, provocant un resultat final incorrecte.

Comunicació entre threads

23



3.24

Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}

24

Thread 1 Thread 2

Aquestes operacions poden passar 
en qualsevol ordre, si no fem res

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}



3.25

Condició de carrera

1.if (primer) {
2.} else {
3. tasca_2();
4.}

25

Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();

1 0

Depèn de l’ordre, podem obtenir una execució correcta, 
com aquesta, en que cada thread fa la seva tasca



3.26

Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();

26

Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();

1 1

Però en altres casos no!



3.27

Condició de carrera

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}

27

Thread 1 Thread 2

1.if (primer) {
2. primer = 0;
3. tasca_1();
4.} else {
5. tasca_2();
6.}

Idealment, voldriem poder especificar regions que 
no es poden executar en dos threads alhora



3.28

Un dels mecanismes més comuns de sincronització entre threads és el 
d’exclusió mutua (mutual exclusion). L’exclusió mutua serveix per definir 
regions de codi on no volem més d’un thread executant-se alhora (regions 
crítiques) i només permetre que entri un thread a la regió.

Implica dues operacions:

 Lock (bloqueig): marca l’inici d’una regió crítica. Si no hi ha cap thread 
executant-la, entra el primer que hi arriba. Si està ocupada, la resta 
s’esperen.

 Unlock (desbloqueig): marca el final d’una regió crítica. Si hi ha threads 
esperants per entrar-hi, es permet l’entrada a un d’ells.

Exclusió mutua

28



3.29

Els mutexes implementen l’algorisme d’exclusió mutua. S’han d’inicialitzar 
abans del primer ús amb pthread_mutex_init(). Si dos threads intenten fer una 
operació de pthread_mutex_lock() sobre el mateix mutex, només un d’ells 
podrà fer-ho, i l’altre romandrà bloquejat fins que es cridi a 
pthread_mutex_unlock().

pthread_mutex

29

Específic
per
Linux

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, 
pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

man 3 pthread_mutex_init



3.30

1.pthread_mutex_lock(&l);
2.if (primer) {
3. primer = 0;
4. pthread_mutex_unlock(&l);
5. tasca_1();
6.} else {
7. pthread_mutex_unlock(&l);
8. tasca_2();
9.}

Exclusió mutua

30

pthread_mutex_init(&l, NULL);



3.31

Coses importants a tenir en compte quan usem l’exclusió mutua:

 Usar un mutex evita, fins a cert punt, l’execució paral·lela del nostre 
programa. Per tant, és interessant usar-la poc i en regions el més petites 
possible.

 La persona programadora és la responsable de trobar les regions crítiques 
del seu programa, i els errors que venen de condicions de carrera són 
difícils de trobar i a vegades inclús de reproduïr.

 Podem definir diferents mutexes per diferents regions crítiques (i és 
recomanable fer-ho).

Exclusió mutua

31


