TS: Multithreading

SISTEMAS OPERATIVOS
GRADO EN INGENIERIA INFORMATICA

Autores: Professors de Sistemes Operatius del
Departamento de Arquitectura de Computadores
(UPC- BarcelonaTech)

UNIVERSITAT POLITECNICA DE CATALUNYA . . .
BARCELONATECH Grau en Enginyeria Informatica
Facultat d’Informatica de Barcelona

Licencia

©@@®SO®CC BY-NC-SA 4.0
Atribucion/Reconocimiento-
NoComercial-Compartirigual

4.0 Internacional
Deed

«By Universitat Politecnica de Catalunya - BarcelonaTech (UPC), Any 2025»

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Indice

B Threads vs procesos

B Librerias de gestion de threads

B Comunicacién entre threads: memoria compartida
B Pthreads sobre Linux

3.3

&

THREADS VS PROCESSOS

Hilos de ejecucion - Threads

B Recordemos: un proceso es la representacion del SO de un programa en ejecucion.

B Hasta el momento, hemos visto que cada proceso solamente tiene un “hilo de ejecucion”,
es decir, que solamente esta ejecutando una cosa a la vez, pero:

B Entre los recursos que puede gestionar un proceso, estan los hilos de ejecucion
(threads).

® Un thread es una instancia o flujo de ejecucion de un proceso, y es la unidad minima de
ejecucion y planificacion del SO (la unidad minima a la que se le puede asignar tiempo

de CPU)

» Cada parte del coddigo que se puede ejecutar de forma independiente podria
asignarse a un thread

® Un thread tiene asignado el contexto necesario para representar un flujo de ejecucion
de instrucciones:

» Identificador (Thread ID: TID)

» Puntero a la pila (Stack Pointer)

» Puntero a la siguiente instruccion (Program Counter)
» Registros (Register File)

» Variables locales del thread (por ejemplo, errno).

Hilos de ejecucion - Threads

B Todos los threads de un mismo proceso comparten los recursos de este:
® Mismo PCB, y en consecuencia...
® Misma memoria
® Mismos dispositivos de entrada/salida, ficheros abiertos, signal handlers, etc..

Codi Dades Fitxers Codi Dades Fitxers

SIS 1S

Proceso single thread Proceso multi-thread

3.6

Hilos de ejecucion - Threads

B Al inicio de la ejecucion, un proceso tiene un solo thread.

B Un proceso puede llegar a tener multiples threads:

O Lg]n vigeojuego actual podria tener > 50 threads. Chrome / Firefox pueden tener > 80
threads.

B La gestion de procesos con varios threads dependera del soporte del SO
® User Level Threads vs Kernel Level Threads

B En la figura siguiente tenemos: P1 con 2 threads, P2 con 4 threads y P3 con

un solo thread
Proceso1l Proceso2 Proceso 3

SEC

A 4

Llamadas a Sistema

KERNEL

3.7

Hilos de ejecucion - Threads

H ;Para qué sirven?
® Permiten explotar paralelismo en un solo proceso (de codigo y de recursos)
® Encapsulan tareas (programacion modular)
® Mejoran la eficiencia de la entrada/salida (permiten delegar operaciones)
® Pipelining de servicios en servidores (para mantener el tiempo de respuesta)

B Ventajas

® Los threads son mas baratos de crear, finalizar y cambiar de contexto (en el
Mismo proceso) que entre procesos diferentes

® Al compartir memoria, los threads pueden comunicarse sin llamadas a sistema

B Inconvenientes

® Complejos de programar y debugar por la memoria compartida

» Se deben solventar problemas de sincronizacion y exclusion mutua: ejecuciones
incoherentes, resultados errdneos, deadlocks, etc.

3.8

Caso de uso: servidor web

Clientes Servidor

® =)
0o =
enviar_peticion(p); o —
esperar_respuesta(p); o0 —

enviar_peticion(p); @

esperar_respuesta(p);

enviar_peticion(p); @

esperar_respuesta(p);

while (1) {
p = recibir_peticion();
gestionar_peticion(p);
enviar_respuesta(p);

}

enviar_peticion(p);
esperar_respuesta(p);

3.9

Caso de uso: servidor web

Con un solo proceso, unicamente podemos gestionar una peticion a la vez:

P1

|\ J
Y Y Y Y

Peticion 1 Peticion 2 Peticion 3 Peticién N

\ 4

Tiempo

Recibir peticion . Gestionar peticion . Enviar respuesta

Pero, para hacerlo con multiples procesos, deberiamos replicar la memoria del
servidor, establecer mecanismos de comunicacion, etc.

3.10

10

Caso de uso: servidor web

El mismo proceso ejecuta cuatro hilos en
paralelo, que pueden gestionar peticiones

Clientes
enviar_peticion(p); o —
. esperar_respuesta(p); o —
.

g (2)
enviar_peticion(p);

for (inti=0;i<4; ++i) {

crear_hilo_de_ejecucion();
}
/ ~
- -
4)

esperar_respuesta(p); J
\

p
enviar_peticion(p);
esperar_respuesta(p);

\
while (1) {
© p = recibir_peticion();
(0] o 0 oz
® gestionar_peticion(p);

\\ enviar_respuesta(p);
\ 1}
_ J

enviar_peticion(p);
. esperar_respuesta(p);

3.1

Caso de uso: servidor web

P1 Thread 1
Peticion 1
Esto es lo que podemos conseguir con
P1 Thread 2 procesos multihilo (o multithreaded)
Peticion 2
pithreads | [

~

Peticion 3

v

Tiempo

Recibir peticion . Gestionar peticion . Enviar respuesta

12

3.12

Procesos vs Threads

B La principal diferencia entre procesos y threads es que los segundos
comparten la memoria:

® Entre procesos, cada uno tiene una copia privada de los datos globales, y ningun
otro proceso puede acceder

® Entre threads, todos los hilos tienen acceso a la misma memoria (toda la del
proceso)

» Lo que si tiene cada thread es una pila/stack propio, asi como los registros, aunque
nada impide que un thread acceda al stack de los otros

13

3.13

GESTION DE THREADS

14

POSIX Threads

M La libreria mas utilizada para crear y gestionar hilos de ejecucion es la
libreria de threads de POSIX, también conocidos como Pthreads. Nos
proporciona interfaces para:

® Crear y destruir hilos de ejecucion
@ Sincronizar los hilos entre ellos
@ Crear regiones de exclusion mutua

* Vale la pena mencionar que a partir de C++11 existe una interfaz hasta cierto punto equivalente en
C++, que es std::thread. Es habitual que algunos lenguajes de programacidn tengan sus propias
interfaces de threads, aunque casi todos acaben usando POSIX threads por debajo.

15

3.15

Gestion de hilos

Operacio Processos Threads

Creacién fork() pthread_create()
Identificacion getpid() pthread_self ()
Finalitzacion exit() pthread_exit()
Sincronizacion final waitpid() pthread_join()

3.16

16

pthread create

R Ry Especifico
#include <pthread.h> oara

Linux
int pthread_create(pthread_t *th, pthread_attr_t A
xattr, void x(*start_routine) (void %), void *arg); N

/

M pthread_create() inicia un nuevo thread que ejecutara la funcion
start_routine con el argumento arg.

th: parametro de salida, contiene el identificador del nuevo thread
attr: opcional, indica atributos adicionales del nuevo thread
start_routine: funcion que debe ejecutar el nuevo thread

arg: argumento que se pasara a la funcion start_routine (como void *)

La funcién devuelve 0O (si no hay error) o un error.

17

3.17

pthread_self

man 3 pthread_self

#include <pthread.h>

: Especifico
pthread_t pthread_self(void); para

Linux

..

B pthread_self() devuelve el identificador del thread actual. JAN

- </

Esta funcidon nunca devuelve error.

18

3.18

pthread_exit

-
man 3 pthread_exit |lS]elldijilele)
#include <pthread.h> oara

Linux e

A

void pthread_exit(void *retval);

-

/

B Debe llamarla el thread que quiere finalizar, y tiene el efecto de terminar la
ejecucion del flujo. El parametro retval sera el valor de retorno del pthread,
gue se puede consultar a través de la llamada pthread_join.

B Llamar a pthread_exit() tiene exactamente el mismo efecto que hacer un
return desde la funcidn start_routine de un thread.

Esta rutina nunca retorna, ni devuelve ningun valor.

19

3.19

pthread_join

— e
man 3 pthread_join e
#include <pthread.h> Especifico

para

Linux e

int pthread_join(pthread_t thread, void **retval);

- </

B pthread_join() bloquea la ejecucion del flujo que la llama hasta que thread
llama a pthread_exit() o finaliza la ejecucion de su rutina. Después de la
llamada, *retval contendra el valor de retorno del thread que haya finalizado
su ejecucion. Si el parametro retval es NULL, se ignora.

La funcién devuelve 0O (si no hay error) o un error.

20

3.20

Ejemplo

#include <pthread.h>
#include <stdio.h>

void *rutina(void *arg)

{
printf("Hola del thread %1ld (id: %p)\n", (long) arg, pthread_self());
return arg;

}

int main()

{
pthread_t threads[2];
long ret;
// Creem el primer thread
pthread_create(&threads[0], NULL, rutina, (void %) 1);
printf("Espero...\n");
pthread_join(threads[0], (void *x) &ret);
printf("Thread finalizado, retorna %ld\n", ret);
// Creem el segon thread
pthread_create(&threads[1], NULL, rutina, (void %) 2);
printf("Espero...\n");
pthread_join(threads[1], (void *x) &ret);
printf("Thread finalizado, retorna %ld\n", ret);

}

3.21

Especifico

21

https://godbolt.org/z/55YKTbc4n

COMUNICACION ENTRE THREADS:
MEMORIA COMPARTIDA

22

Comunicacion entre threads

B Como todos los threads de un proceso comparten memoria, se pueden
comunicar a través de ella de una manera muy sencilla

® Por ejemplo, modificando y leyendo la misma variable

B Sin embargo, hay un problema habitual que resulta del uso simultaneo de
la memoria:

@ Las condiciones de carrera o race condition, que se producen cuando
dos 0 mas threads modifican la misma posicidn de memoria sin ver la
modificacion del otro, provocando un resultado final incorrecto.

23

3.23

Condicion de carrera

Thread 1 Thread 2

1.if (primero) { 1.if (primero) {

2. primero = 0; 2. primero = 0;
3. tarea_1(); 3. tarea_1();
4.} else { 4.} else {

5. tarea_2(); 5. tarea_2();
6.} 6.}

Sin mas modificaciones, estas operaciones
pueden suceder en cualquier orden

|

3.24

24

Condicion de carrera

Thread 1 Thread 2 /@

1.if (primero) { 1.if (primero) {

2. primero = 0; 2.} else {

3. tarea_1(); 3. tarea_2();
4.}

Dependiendo del orden, podemos obtener una ejecucion correcta,
como la que se muestra, en que cada thread hace su tarea

3.25

Condicion de carrera

Thread 2

1.if (primero) {

Thread 1

1.1f (primero) {
2. primero = 0;
3. tarea_1();

2. primero = 0;
3. tarea_1();

[Pero en otros casos NO J

3.26

Condicion de carrera

Thread 1

Thread 2

1.if (primero) {

1.if (primero) {

2. primero = 0; 2. primero = 0;
3. tarea_1(); 3. tarea_1();
4.} else { 4.} else {

5. tarea_2(); 5. tarea_2();
6.} 6.}

Para solucionarlo, nos gustaria poder especificar regiones
que no se pueden ejecutar en mas de un thread a la vez

3.27

27

Exclusion mutua

B Uno de los mecanismos mas comunes de sincronizacion entre threads es la
exclusion mutua (mutual exclusion). La exclusidn mutua sirve para definir
regiones de codigo donde solo un thread puede acceder simultaneamente
(regiones criticas).

B Implica dos operaciones:

® Lock (bloqueo): marca el inicio de una region critica. Si no hay ningun
thread ejecutandola, entra el primero que llega. Si esta ocupada, el resto
espera.

® Unlock (desbloquei): marca el final de una region critica. Si hay threads
esperando, se permite la entrada de uno de ellos.

28

3.28

pthread _mutex

- e
man 3 pthread_mutex_init e
#include <pthread.h> EZ?:CIﬂCO

Linux

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex) ;
int pthread_mutex_unlock(pthread_mutex_t *mutex);

/

B Los mutex implementan el algoritmo de exclusion mutua. Deben inicializarse
antes del primer uso con pthread_mutex_init(). Si dos hilos intentan hacer
una operacion de pthread_mutex_lock() sobre el mismo mutex, solo uno de
ellos podra hacerlo, y el otro permanecera bloqueado hasta que se llame a

pthread_mutex_unlock().

29

3.29

Exclusion mutua

pthread_mutex_init(&l, NULL);

1.pthread_mutex_lock(&l);

2.1f (primero) {

3. primero = 0;
pthread_mutex_unlock (&l);
tarea_1();

.} else {
pthread_mutex_unlock (&l);
tarea_2();

© 00 N oo o b

3.30

Exclusion mutua

B Cosas importantes a tener en cuenta cuando usamos la exclusion mutua:

® Usar un mutex evita, hasta cierto punto, la ejecucion paralela de nuestro
programa. Por tanto, es interesante usarlo poco y en regiones lo mas
pequenas posible.

® La persona programadora es la responsable de encontrar las regiones
criticas de su programa, y los errores que vienen de condiciones de
carrera son dificiles de encontrar y a veces incluso de reproducir.

® Podemos definir diferentes mutex para diferentes regiones criticas (y es
recomendable hacerlo).

31

3.31

