
3.1

Grau en Enginyeria Informàtica

T5: Multithreading

SISTEMAS OPERATIVOS
GRADO EN INGENIERÍA INFORMÁTICA

Autores: Professors de Sistemes Operatius del
Departamento de Arquitectura de Computadores

(UPC- BarcelonaTech)

3.2

Licencia

«By Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Any 2025»

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

3.3

! Threads vs procesos
! Librerías de gestión de threads
! Comunicación entre threads: memoria compartida
! Pthreads sobre Linux

Indice

3.4

THREADS VS PROCESSOS

4

3.5

! Recordemos: un proceso es la representación del SO de un programa en ejecución.
! Hasta el momento, hemos visto que cada proceso solamente tiene un “hilo de ejecución”,

es decir, que solamente está ejecutando una cosa a la vez, pero:

! Entre los recursos que puede gestionar un proceso, están los hilos de ejecución
(threads).
" Un thread es una instancia o flujo de ejecución de un proceso, y es la unidad mínima de

ejecución y planificación del SO (la unidad mínima a la que se le puede asignar tiempo
de CPU)
4Cada parte del código que se puede ejecutar de forma independiente podría

asignarse a un thread
" Un thread tiene asignado el contexto necesario para representar un flujo de ejecución

de instrucciones:
4 Identificador (Thread ID: TID)
4Puntero a la pila (Stack Pointer)
4Puntero a la siguiente instrucción (Program Counter)
4Registros (Register File)
4Variables locales del thread (por ejemplo, errno).

Hilos de ejecución - Threads

5

3.6

! Todos los threads de un mismo proceso comparten los recursos de este:
" Mismo PCB, y en consecuencia…
" Misma memoria
" Mismos dispositivos de entrada/salida, ficheros abiertos, signal handlers, etc..

Hilos de ejecución - Threads

6

Codi Dades Fitxers

Registres Stack PC

Codi Dades Fitxers

Registres

Stack

PC

Registres

Stack

PC

Registres

Stack

PC

Proceso single thread Proceso multi-thread

3.7

! Al inicio de la ejecución, un proceso tiene un solo thread.
! Un proceso puede llegar a tener múltiples threads:

" Un videojuego actual podría tener > 50 threads. Chrome / Firefox pueden tener > 80
threads.

! La gestión de procesos con varios threads dependerá del soporte del SO
" User Level Threads vs Kernel Level Threads

! En la figura siguiente tenemos: P1 con 2 threads, P2 con 4 threads y P3 con
un solo thread

Hilos de ejecución - Threads

7
KERNEL

Llamadas a Sistema

Proceso 1 Proceso 2 Proceso 3

3.8

! ¿Para qué sirven?
" Permiten explotar paralelismo en un solo proceso (de código y de recursos)
" Encapsulan tareas (programación modular)
" Mejoran la eficiencia de la entrada/salida (permiten delegar operaciones)
" Pipelining de servicios en servidores (para mantener el tiempo de respuesta)

! Ventajas
" Los threads son más baratos de crear, finalizar y cambiar de contexto (en el

mismo proceso) que entre procesos diferentes
" Al compartir memoria, los threads pueden comunicarse sin llamadas a sistema

! Inconvenientes
" Complejos de programar y debugar por la memoria compartida

4Se deben solventar problemas de sincronización y exclusión mútua: ejecuciones
incoherentes, resultados erróneos, deadlocks, etc.

Hilos de ejecución - Threads

8

3.9

enviar_petición(p);
esperar_respuesta(p);

Caso de uso: servidor web

9

while (1) {
p = recibir_petición();
gestionar_petición(p);
enviar_respuesta(p);

}

enviar_petición(p);
esperar_respuesta(p);

enviar_petición(p);
esperar_respuesta(p);

enviar_petición(p);
esperar_respuesta(p);

Clientes Servidor

1

2

3

N

3.10

Con un solo proceso, únicamente podemos gestionar una petición a la vez:

Caso de uso: servidor web

Pero, para hacerlo con múltiples procesos, deberíamos replicar la memoria del
servidor, establecer mecanismos de comunicación, etc.

10

Recibir petición Gestionar petición Enviar respuesta

P1

Tiempo

Petición 1 Petición 2 Petición 3 Petición N

…

3.11

enviar_petición(p);
esperar_respuesta(p);

Caso de uso: servidor web

11

for (int i = 0; i < 4; ++i) {
crear_hilo_de_ejecución();

}

enviar_petición(p);
esperar_respuesta(p);

enviar_petición(p);
esperar_respuesta(p);

enviar_petición(p);
esperar_respuesta(p);

Clientes
Servidor

1

2

3

N

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = rebre_petició();
gestionar_petició(p);
enviar_resposta(p);

}

while (1) {
p = recibir_petición();
gestionar_petición(p);
enviar_respuesta(p);

}

El mismo proceso ejecuta cuatro hilos en
paralelo, que pueden gestionar peticiones

3.12

Caso de uso: servidor web

12

P1 Thread 1

Tiempo

Petición 1

Petición 2

Petición 3

P1 Thread 2

P1 Thread 3

Esto es lo que podemos conseguir con
procesos multihilo (o multithreaded)

Recibir petición Gestionar petición Enviar respuesta

3.13

! La principal diferencia entre procesos y threads es que los segundos
comparten la memoria:
" Entre procesos, cada uno tiene una copia privada de los datos globales, y ningún

otro proceso puede acceder
" Entre threads, todos los hilos tienen acceso a la misma memoria (toda la del

proceso)
4Lo que sí tiene cada thread es una pila/stack propio, así como los registros, aunque

nada impide que un thread acceda al stack de los otros

Procesos vs Threads

13

3.14

GESTIÓN DE THREADS

14

3.15

! La librería más utilizada para crear y gestionar hilos de ejecución es la
librería de threads de POSIX, también conocidos como Pthreads. Nos
proporciona interfaces para:
" Crear y destruir hilos de ejecución
" Sincronizar los hilos entre ellos
" Crear regiones de exclusión mutua

* Vale la pena mencionar que a partir de C++11 existe una interfaz hasta cierto punto equivalente en
C++, que es std::thread. Es habitual que algunos lenguajes de programación tengan sus propias
interfaces de threads, aunque casi todos acaben usando POSIX threads por debajo.

POSIX Threads

15

3.16

Gestión de hilos

16

Operació Processos Threads

Creación fork() pthread_create()

Identificación getpid() pthread_self()

Finalitzación exit() pthread_exit()

Sincronización final waitpid() pthread_join()

3.17

! pthread_create() inicia un nuevo thread que ejecutará la función
start_routine con el argumento arg.

● th: parámetro de salida, contiene el identificador del nuevo thread
● attr: opcional, indica atributos adicionales del nuevo thread
● start_routine: función que debe ejecutar el nuevo thread
● arg: argumento que se pasará a la función start_routine (como void *)

La función devuelve 0 (si no hay error) o un error.

pthread_create

17

Específico
para
Linux

#include <pthread.h>

int pthread_create(pthread_t *th, pthread_attr_t
*attr, void *(*start_routine)(void *), void *arg);

man 3 pthread_create

3.18

!

! pthread_self() devuelve el identificador del thread actual.

Esta función nunca devuelve error.

pthread_self

18

Específico
para
Linux

#include <pthread.h>

pthread_t pthread_self(void);

man 3 pthread_self

3.19

q

! Debe llamarla el thread que quiere finalizar, y tiene el efecto de terminar la
ejecución del flujo. El parámetro retval será el valor de retorno del pthread,
que se puede consultar a través de la llamada pthread_join.

! Llamar a pthread_exit() tiene exactamente el mismo efecto que hacer un
return desde la función start_routine de un thread.

Esta rutina nunca retorna, ni devuelve ningún valor.

pthread_exit

19

Específico
para
Linux

#include <pthread.h>

void pthread_exit(void *retval);

man 3 pthread_exit

3.20

! pthread_join() bloquea la ejecución del flujo que la llama hasta que thread
llama a pthread_exit() o finaliza la ejecución de su rutina. Después de la
llamada, *retval contendrá el valor de retorno del thread que haya finalizado
su ejecución. Si el parámetro retval es NULL, se ignora.

La función devuelve 0 (si no hay error) o un error.

pthread_join

20

Específico
para
Linux

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

man 3 pthread_join

3.21

#include <pthread.h>
#include <stdio.h>

void *rutina(void *arg)
{

printf("Hola del thread %ld (id: %p)\n", (long) arg, pthread_self());
return arg;

}

int main()
{

pthread_t threads[2];
long ret;
// Creem el primer thread
pthread_create(&threads[0], NULL, rutina, (void *) 1);
printf("Espero...\n");
pthread_join(threads[0], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);
// Creem el segon thread
pthread_create(&threads[1], NULL, rutina, (void *) 2);
printf("Espero...\n");
pthread_join(threads[1], (void **) &ret);
printf("Thread finalizado, retorna %ld\n", ret);

}

Ejemplo

21

Específico
para
Linux

https://godbolt.org/z/55YKTbc4n

https://godbolt.org/z/55YKTbc4n

3.22

COMUNICACIÓN ENTRE THREADS:
MEMORIA COMPARTIDA

22

3.23

! Como todos los threads de un proceso comparten memoria, se pueden
comunicar a través de ella de una manera muy sencilla
" Por ejemplo, modificando y leyendo la misma variable

! Sin embargo, hay un problema habitual que resulta del uso simultáneo de
la memoria:

" Las condiciones de carrera o race condition, que se producen cuando
dos o más threads modifican la misma posición de memoria sin ver la
modificación del otro, provocando un resultado final incorrecto.

Comunicación entre threads

23

3.24

Condición de carrera

1.if (primero) {
2. primero = 0;
3. tarea_1();
4.} else {
5. tarea_2();
6.}

24

Thread 1 Thread 2

Sin más modificaciones, estas operaciones
pueden suceder en cualquier orden

1.if (primero) {
2. primero = 0;
3. tarea_1();
4.} else {
5. tarea_2();
6.}

3.25

Condición de carrera

1.if (primero) {
2.} else {
3. tarea_2();
4.}

25

Thread 1 Thread 2

1.if (primero) {
2. primero = 0;
3. tarea_1();

1 0

Dependiendo del orden, podemos obtener una ejecución correcta,
como la que se muestra, en que cada thread hace su tarea

3.26

Condición de carrera

1.if (primero) {
2. primero = 0;
3. tarea_1();

26

Thread 1 Thread 2

1.if (primero) {
2. primero = 0;
3. tarea_1();

1 1

Pero en otros casos NO

3.27

Condición de carrera

1.if (primero) {
2. primero = 0;
3. tarea_1();
4.} else {
5. tarea_2();
6.}

27

Thread 1 Thread 2

1.if (primero) {
2. primero = 0;
3. tarea_1();
4.} else {
5. tarea_2();
6.}

Para solucionarlo, nos gustaría poder especificar regiones
que no se pueden ejecutar en más de un thread a la vez

3.28

! Uno de los mecanismos más comunes de sincronización entre threads es la
exclusión mutua (mutual exclusion). La exclusión mutua sirve para definir
regiones de código donde solo un thread puede acceder simultáneamente
(regiones críticas).

! Implica dos operaciones:

" Lock (bloqueo): marca el inicio de una región crítica. Si no hay ningún
thread ejecutándola, entra el primero que llega. Si está ocupada, el resto
espera.

" Unlock (desbloquei): marca el final de una región crítica. Si hay threads
esperando, se permite la entrada de uno de ellos.

Exclusión mutua

28

3.29

! Los mutex implementan el algoritmo de exclusión mutua. Deben inicializarse
antes del primer uso con pthread_mutex_init(). Si dos hilos intentan hacer
una operación de pthread_mutex_lock() sobre el mismo mutex, solo uno de
ellos podrá hacerlo, y el otro permanecerá bloqueado hasta que se llame a
pthread_mutex_unlock().

pthread_mutex

29

Específico
para
Linux

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

man 3 pthread_mutex_init

3.30

1.pthread_mutex_lock(&l);
2.if (primero) {
3. primero = 0;
4. pthread_mutex_unlock(&l);
5. tarea_1();
6.} else {
7. pthread_mutex_unlock(&l);
8. tarea_2();
9.}

Exclusión mutua

30

pthread_mutex_init(&l, NULL);

3.31

! Cosas importantes a tener en cuenta cuando usamos la exclusión mutua:
" Usar un mutex evita, hasta cierto punto, la ejecución paralela de nuestro

programa. Por tanto, es interesante usarlo poco y en regiones lo mas
pequeñas posible.

" La persona programadora es la responsable de encontrar las regiones
críticas de su programa, y los errores que vienen de condiciones de
carrera son difíciles de encontrar y a veces incluso de reproducir.

" Podemos definir diferentes mutex para diferentes regiones críticas (y es
recomendable hacerlo).

Exclusión mutua

31

