

THEORY OF INFORMATION, ARCHITECTURE OF COMPUTERS AND
 OPERATING SYSTEMS (TIACOS)
 Bioinformatics, ESCI
 Computer Architecture Dept., UPC
 2020/2021 – 3th term

Midterm exam

Wed 12 May

- This exam is **closed book, closed Internet**. You cannot use your laptop.
- Time **64 minutes**

1. (2 points) Definitions. What is?

(a) an Operating System?

The startup program that manages everything. The OS is a software that manages hardware resources. It acts like intermediary between applications and hardware. Provides a runtime environment between convenient and efficient to run programs.

(b) a process?

A process is the OS representation of a program during its execution.

2. (2 points) Filling the gaps. Write the following numbers in **decimal**, **binary** and **hexadecimal**. Show all calculation steps.

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
25	00011001	19
82	01010010	52
167	10100111	A7
172	10101100	AC

$$0x19 = 0b \underbrace{0}_{1} \underbrace{0001}_{9} \underbrace{1001}_{1}$$

$$0b0\overset{6}{\boxed{1}}\overset{4}{\boxed{0}}\overset{1}{\boxed{1}}00\overset{1}{\boxed{1}}0 = 2^6 + 2^4 + 2^1 = 64 + 16 + 2 = 82$$

$$0xA7 = 0b \underbrace{1010}_{A} \underbrace{0111}_{7}$$

$$0b10101100 = 0b \underbrace{1010}_{A} \underbrace{1100}_{C} = 0xAC$$

3. (2 points) Floating point representation. Suposse we are using the standard IEEE 754, 32b, normalized. Which is the real number represented by the number $0x40D80000$? Show all calculation steps.

$$0x40D80000 = 0b \begin{array}{c} sign \quad exponent \\ 0 \end{array} \boxed{10000001} \begin{array}{c} mantissa \\ 10110000000000000000000000000000 \end{array}$$

$$Sign: positive, e = \overbrace{129}^{exponent} - \overbrace{127}^{E_{max}} = 2, \text{frac} = \overbrace{1}^{normalized} . \overbrace{1011}^{mantissa}$$

$$real: 1.1011 * 2^2 = 110.11_2 = 2^2 + 2^1 + 2^{-1} + 2^{-2} = \mathbf{6.75}_{10}$$

4. (2 points) Bash. In a Linux system, the password file (`/etc/passwd`) has the following contents:

```
root:x:0:0:root:/root:/bin/bash
sync:x:4:65534:sync:/bin:/bin/sync
john:x:1000:1000:john,,,:/home/john:/bin/bash
alice:x:1001:1000:Alice,,,:/home/alice:/bin/zsh
bob:x:1002:1000:Bob:/home/bob:/bin/tcsh
```

What's the output after execute the following command line? Explain what each command does.

```
cat /etc/passwd | awk -F: '{print $7}' | xargs -I shell ls -la shell | grep rw-
```

1. `cat` reads the file `/etc/passwd`, writing its content to the standard output (the first pipe).
2. `awk -F: '{print $7}'`, prints to the standard output (the second pipe) the 7th column of each line read from standard input (the first pipe). The 7th column contains a path to a shell binary. For instance, `/bin/bash`.
3. `xargs -I shell ls -la shell`, runs in parallel `ls -la shell`, that is, list all the information of the file named 'shell'; where 'shell' is the 7th column of each line in `/etc/passwd`
4. `grep rw-` searches the standard input (last pipe) selecting the lines that match the pattern 'rw-', ie, files with read and write permissions, but not execute.

Hence, the output of this command line is **empty** because all the files in `/bin` have execute permission.

5. (2 points) Integer representation. What's the value, in decimal, of **a**, **b**, **c**, **d** variables after execute the following Python lines of code?

```
a = 8>>3
b = ~a + 1
c = a & b
d = a | b | c
```

a = 1, because $8 \gg 3$ returns 8 with the bits shifted to the right by 3 places . So, **a** is equal to **1**.

$$\begin{array}{r} 0\dots01000_2 \\ \gg\quad 3 \\ \hline 0\dots00001_2 \end{array}$$

b = -1, because $\sim a + 1$ returns the complement of **a** (the number you get by switching each 1 for a 0 and each 0 for a 1) plus 1. As it is codified in 2's complement, $\sim a + 1$ is equal to $-a = -1 = b$. In binary: $1\dots1$

$$\sim a + 1 = \sim 0\dots01 + 1 = 1\dots10 + 1 = 1\dots1$$

c = 1, because **a & b** does a "bitwise and". Each bit of the output is 1 if the corresponding bit of **a** AND of **b** is 1, otherwise it's 0. So, **c** is equal to **1**.

$$\begin{array}{r} 0\dots01 \\ \& 1\dots11 \\ \hline 0\dots01 \end{array}$$

d = -1, because **a | b | c** does a "bitwise or". Each bit of the output is 1 if the corresponding bit of **a** OR of **b** OR of **c** is 1, otherwise it's 0. So, **d** is equal to **-1**,

$$\begin{array}{r} 0\dots01 \\ \text{because } b \text{ is } 1\dots1. \quad | \quad 1\dots11 \\ \quad | \quad 0\dots01 \\ \hline 1\dots11 \end{array}$$