
THEORY OF INFORMATION, ARCHITECTURE OF COMPUTERS AND
OPERATING SYSTEMS (TIACOS)

Bioinformatics, ESCI
DAC, UPC

Final exam Spring 2023
There are six questions. Answer the questions in a text file. Mark clearly which question you are answering.
Paper solutions are not allowed.
Grades will be published at aula.esci on Monday, 3 July at 8.00 am.
Review for the exam will be held in building C6, room 216, Campus Nord, UPC on Monday, 3 July, 11.00 -
12.00 am.

Questions

1. (1 point) Computer architechture
(a) What’s the first phase of CPU’s operation?

The Fetch phase

(b) What happens during the first phase of CPU’s operation?

This is where we retrieve the instruction from memory pointed by th Instruction Pointer
register (also named PC, or IAR register) and this value is copied to the Instruction Register

2. (1 point) Integer representation
This is the logic circuit for finding 2’s complement of the 5-bit binary number.

(a) If the input is 100002, what’s the output in binary?

For 5 bits, this is the most negative number, so it is a special case. The two’s complement of
the most negative number representable is itself, 100002. As explained in classroom (slide 13,
Unit Bits), you have to reverse the bits and add 1, ignoring the overflow.

(b) What’s the decimal value, in 5 bits 2’s complement representation, of the integer 100002?

y = −yn−1 · 2n−1
n−2∑
i=0

yi · 2i = −1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = −16

3. (0.5 points) Operating System
(a) What is the goal of a cpu scheduler algorithm?



A scheduler may aim at one or more goals, for example:
• maximizing throughput (the total amount of work completed per time unit);
• maximizing fairness (equal CPU time to each process, or more generally appropriate times

according to the priority and workload of each process).

(b) In this context, what’s the meaning of preemption?

In cpu scheduling, preemption is the act of temporarily interrupting an executing task, with
the intention of resuming it at a later time.

4. (0.5 points) Memory
(a) What is thrashing?

Thrashing occurs when virtual memory management is in a constant state of paging and page
faults.

(b) What would you do to solve it?

Increasing RAM or killing processes.

5. (3 points) Processes.
Read the following Python code carefully and answer the questions. Let’s assume there are no exceptions
during the execution of this code.

1 # global variables
2 count = 3
3 q = ["NOT PASSED","PASSED"]
4 i = 1
5 examen = q[0]
6 # handler function for signal USR1
7 def handler (signum, frame):
8 global i
9 i = 2

10 return 0
11 # child process work
12 def work():
13 global examen
14 examen = q[1]
15 os.execlp("grep","grep","wilkes","/etc/passwd")
16 examen = q[0]
17 return 0
18
19 signal.signal(signal.SIGUSR1,handler)
20 while count > 0:
21 pid = os.fork()
22 if pid == 0:
23 os.kill(os.getpid(),signal.SIGUSR1)
24 examen = q[work()]
25 else:
26 r,s = os.wait()
27 examen = q[i-(s>>8)]
28 count -= 1
29 print(os.getpid(),"-",examen)

(a) (0.5 points) How many processes are created?

3 children + parent

(b) (0.5 points) What happens when the parent process receives the signal SIGCHLD?



Nothing, by default it is ignored and in this code it is not reprogrammed.

(c) (0.5 points) These processes are executed concurrently or sequentially?

Sequentially. Parent process waits for the child exits before create another one.

(d) (0.5 points) In any child process, what’s the last value of the variable examen?

examen = q[1] (line 19) after that the system call exec changes the code and examen disap-
pears

(e) (1 point) Change the argument of just one system call in order to modify the printed message from
NOT PASSED to PASSED. Which line has you changed?

PASSED string is in position 1 of the q array. Parent process prints q[i-(s<<8)], therefore, in
other to change the output we can change i or s. So, there are two solutions to this question,
change s or i, but changing only one argument of a system call.

• Change i: In line 23, the child process is sending a SIGUSR1 signal to itself, however
the child process does not print anything. If it sends a SIGUSR1 signal to its parent,
the handler function will be executed and the global variable i will be 2. So, changing
getpid() by getppid() is an answer.

• Change s: And this solution has two folds:
– Change signal.SIGUSR1: Also in line 23, if you send any signal that provoques the

termination of the child process, the value of s in the parent process after wait() will
change.

– In line 15. That’s the return of the execution of grep. As the man page says, grep
returns 0 if it finds something and returns 1 if it doesn’t. In this case, is returning 1,
because user “wilkes” does not exit. In order to return 0, we have to ask grep for an
existing user. For instance, “root”.

6. (4 points) Files.
We have a text (ascii) file, called bases.txt, containing strings of bases separated by a blank space. It
looks like this:
CTGA AGTC CCTA AAGG

We want to program a function in Python, called read word which, given a valid file descriptor, returns
the next string of bases. We have three different versions of the function read word.
Carefully analyse the code and give justified answers to the questions.

Listing 1: version A

def read_word(fd):
word=b’’
found=False
c=os.read(fd,2)
while (len(c)>1) and not found:

if (c[1]==32):
found=True

else:
word+=c
c=os.read(fd,2)

return word

Listing 2: version B

def read_word(fd):
word=b’’
c=os.read(fd,2)
while (len(c)>1):

if (c[1]==32):
break

word+=c
c=os.read(fd,2)

return word

Listing 3: version C

def read_word(fd):
word=b’’
found=False
c=os.read(fd,2)
while (len(c)>1) and not found:

word+=c[0].to_bytes(1,"little")
os.lseek(fd,-1,os.SEEK_CUR)
if (c[0]==32):

found=True
else:

c=os.read(fd,2)
return word



(a) (2 points) Which version(s) of read word works correctly?

Only version C works properly, because the three versions read 2 bytes each loop, but only C
checks byte by byte.

(b) (2 points) Assuming you have a version of read word that correctly returns a whitespace-terminated
base string, program a Python script that opens the bases.txt file for reading and, using only the
read word function and any system calls, reads all base strings and writes them to standard out-
put.

1 fd = os.open("bases.txt", os.O_RDONLY)
2 word = read_word(fd)
3 while (len(word)>0):
4 os.write(1,word)
5 word = read_word(fd)
6 os.close(fd)


