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Memory Management

The CPU can only access directly to memory and the register bank
Instructions and data must be located in main memory

The CPU sends out logical addresses (logical @s)

The requested instructions/data are located in physical addresses

Logical @s may not directly match the correspondent physical @s
The OS in conjunction with the Hardware manages this translation

logical @ → physical @

The process uses virtual memory to become larger than main memory size
Logical addresses point to virtual memory locations



Program Loading

The OS loads the program from the disk to Physical Memory
1) Request & reserve space in main memory

2) Load the program

3) Start running
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Multiprogrammed OS

Memory regions are private per process
In multiprogrammed systems (multiple processes 
are alive at a time) the OS must protect mem regions

Contents usually are distributed in remote
physical memory locations

The OS memory zone holds the kernel and
all required internal data and routines

The OS memory space NEEDS protection
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Process Contents in Memory

Stack: dynamic mem
Function arguments

Local Variables

Shared libraries: Code, data…

Heap: dynamic mem
Mem allocated at runtime

Data: .bss & .data
Global variables

Code: .text
Instructions
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Multiprogrammed systems

1-Process A is running
2-Context switch to C

MMU

translation
and protection
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Paging: main concepts

Page
Fixed size amount of memory 

Its size needs to be power of 2 to simplify the hardware

In the order of few Kbytes (4Kb, 8Kb, …)

Logical memory is divided into pages (page)

Physical memory is divided into pages (frame)

The OS maps logical pages into frames (physical pages)
We need HW support

This support I called MMU (Memory Management Unit)



Memory addresses

If we envision the memory as a vector of bytes
The address is “the index of the vector”

Memory addresses are between 16 to 64 bits long 
The exact length depends on the processor architecture

Let’s assume a 32-bit memory address and 4K size pages
To address 4K bytes = 4096 bytes I need 12 bit

To get the physical address, we just need to change the page, not the offset

page offset

20 bits 12 bits

32 bits



Page and offset: example

Computing the page and object of an address
Logical addresses  32 bits
Page size  4Kbytes 12 bits
What page and what offset has address 12356?

Using the bits
12356 = 0000 0000 0000 0000 0011 0000 0100 0100
Page = 0000 0000 0000 0000 0011  = 3
Offset = 0000 0100 0100 = 68

Dividing
Page = ⎣12356/4096⎦ = 3
Offset = 12356 module 4096  = 68



MMU simplified schema

page offset frame offset

MMU
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the MMU is  a hardware component which, at least, offers address translation 
and memory access protection. It can also support other management tasks.
OS is responsible for configuring the MMU with the correct address 
translation values for the current process in execution 

Which logical @ are valid and which are their corresponding physical @
Guarantees that each process gets assigned only its own physical @

HW support to translation and protection between processes 
MMU receives a logical @ and translates it to the corresponding physical address 
using its data structures

It throws an exception to the OS if the logical address is not marked as valid or if it has not 
associated a physical address

OS manage the exception according to the situation 
For example, if the logical address is not valid it can kill the process (SISEGV signal)

Memory Management Unit



When does the OS need to update the address translation 
information??? 

Case 1: When assigning memory
Initialization when assigning new memory (mutation, execlp)
Changes in the address space: grows/diminishes. When 
allocating/deallocating dynamic memory

Case 2: When switching contexts
For the process that leaves the CPU: if it is not finished, then keep in its data 
structures (PCB) the information to configure the MMU when it resumes the 
execution
For the process that resumes the execution: configure the MMU

Hardware support: translation



It is performed in the same cases than the memory assignment

It also enables to implement protection against undesirable 
accesses/type of accesses

Invalid logical addresses
Valid logical addresses but wrong type of access (writing on a read-only region)
Valid logical address and apparently “wrong” type of access due to some 
optimization implemented by the OS

For example, COW (we will explain it later) 

For all cases → exception captured by the CPU and managed by the OS 
OS has all the information about the description of the process address space 
and can check if the exception is really due to wrong access or not

HW Support : Protection



Virtual memory
Extension for the on-demand loading optimization

In addition to load pages on-demand, it enables the system to take out pages 
that are not needed at a given time

Goal
To reduce amount of physical memory assigned to a process

A process only needs physical memory to hold the current instruction and the data that this 
instruction references

To increase potential multiprogramming grade
Amount of concurrent processes

Optimizations: Virtual memory



Virtual memory based on paging
Logical address space of a process is distributed across physical memory 
(present pages) and swap area (non-present pages)

Optimizations: Virtual memory (III)
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Virtual memory: concept

Let’s examine an address
32-bit memory addresses  memory size can be 4.294.967.296 bytes

4G per process

64-bit memory addresses  16 Exabytes x process

No system has so much physical memory

How about putting in disk what does not fit in memory?
This would allow to have much larger “memories”
What we need

Presence bit  Extra bit in each page-table entry to know whether a page is in memory

Dirty bit  Extra bit in each page-table entry to know whether a page has been modified

Page fault mechanism

Mechanism to find a page into the disk (we can use the page table)

Replacing algorithm



Virtual memory: how it works

When the MMU translates a page it can
Find the presence bit to 1 = the page is in memory
 same as we have already explained

Find the presence bit to 0 = the page is NOT in memory
 Raise an interruption (call the OS to solve the ”problem”)

Page fault
Reaction of the OS to a missing page
Decide which page to move out of memory (if no empty memory available)

FIFO

Not Recently Used (needs hardware support)

Move the page to disk if it has been modified

Bring the page from disk and update page table
Restart memory access



TLB and page table

Page table can be very big
Where do I put it?  memory

Putting the page table in memory is very slow
Every memory access needs the page table
Every access would need to access the memory twice

PANIC!!!

Solution  TLB (Table lookup buffer)
Keep a portion of the page table in the MMU
As programs have locality this works very well
TLB misses  similar to page faults



Memory access steps:

Virtual memory 
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Effects of using virtual memory:
Physical memory can be smaller than the sum of the address spaces of the 
loaded processes

Physical memory can be smaller than the logical address space of a single 
process

Accessing to non-present pages is slower than accessing to present pages
Exception + page loading

It is important to reduce the number of page faults

Virtual memory 



Thrashing
Process is in thrashing when

It spends more time performing page swapping than executing program code 
It is not able to keep simultaneously in memory the minimum number of pages required 
to advance with the execution. 

Memory system is overloaded
Detection: to control page fault rate per process
Management: to control multiprogramming grade and to swap out processes

Virtual memory 



Goal: to delay allocation/initialization of physical memory until it is really 
necessary

If a new zone is never accessed → it is not necessary to assign physical memory to it
If a copied zone is never written → it is not necessary to replicate it 
Save time and memory space

Example: fork
Delays copy of each region (code, data, etc.) until it is accessed for writing 
Avoids physical copy for those regions that are only read (for example, code region)
It is usually implemented at page-level: frames are allocated/copied when pages are 
accessed to write

It can be applied
In the address space of one process: dynamic memory case
Between processes: fork case

Optimizations: COW (Copy on Write)



Overview: OS needs a mechanism to detect writes and to perform the 
physical memory allocation and the copy

When the logical memory region is allocated: 
OS registers in the MMU the new region with the same physical memory than the 
source region
OS registers the new region in the data structure describing the address space of the 
process (in the PCB), indicating which are the real permissions of access
OS marks in the MMU both new region and source region as read-only regions

When a process tries to write on the new region or on the source region:
MMU throws an exception to the OS. OS management code performs the actual 
allocation and copy, updates MMU with the real permission for both regions and 
resets the instruction

COW: Implementation



Process A physical memory assignment:
Code: 3 pages, Data: 2 pages, Stack: 1 page, Heap: 1 page

Let’s consider that process A executes a fork system call. Just after fork:
Total physical memory: 

Without COW: process A= 7 pages + child = 7 pages = 14 pages
With COW: process A= 7 pages + child =0 pages = 7 pages

Later on the execution… depends on the code executed by the processes, for example:
If child executes an exec (and its new address space uses 10 pages):

Without COW: process A= 7 pages+ child = 10 pages= 17 pages
With COW: process A= 7 pages+ child A=10 pages= 17 pages

If child does not execute an exec, at least code will be always shared between both processes and the rest of the 
address space depends on the code. If only the code is shared:

Without COW: process A= 7 pages+ child A= 7 pages= 14 pages
With COW: process A= 7 pages+ child A=4 pages= 11 pages

In general, in order to compute the amount of required physical memory it is necessary to compute 
how many pages are modified (and thus cannot be shared) and how many pages are read-only (and 
thus can be shared) 

COW: example



Goal: to minimize number of page faults

Overview: to predict which pages will need a process and load them 
in advance

Parameters to consider:
Prefetch distance: time between the page loading and the page reference

Number of pages to load in advance

Some simple prediction algorithms:
Sequential 

Strided

Optimizations: Prefetch



Storage hierarchy
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System calls

Allocation/deallocation memory
Not used in python

Internal to create/destroy objects

Mmap
Maps a file into memory

Allows the program to access a file as if it were a vector in memory

mmap.mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE|P
ROT_READ, access=ACCESS_DEFAULT[, offset])

fileID file descriptor of an open file
length (if 0 then size of the file)
Flags

MAP_SHARED

MAP_PRIVATE

offset must be a multiple of PAGESIZE



Mmap: example

▪ import mmap

import os

fd = os.open("FILE", 

os.O_RDWR)

i= 0

while i < 10:

buff = os.read(fd,1)

print (buff)

i = i + 1

os.close(fd)

▪ import mmap

import os

fd = os.open("FILE", 

os.O_RDWR)

i = 0

v = mmap.mmap(fd,0)

while i < 10:

print (v[i]))

i = i + 1

v.close()

os.close(fd)



Mmap: example of reading a file

import mmap
import os
import sys

fd = os.open("SRR000049.fastq",os.O_RDONLY)
mm = mmap.mmap(fd,0, access=mmap.ACCESS_READ)
header = mm.readline()
print(header)
mm.seek(0)
i = mm.find(b'=')
print("Lenghth of the sequence = ",mm[i+1:i+4].decode())
mm.close()
os.close(fd)



Mmap: example of scratchpad between parent and child

import mmap
import os

mm = mmap.mmap(-1, 12)
mm.write(b"Hello world!")
pid = os.fork()
if pid == 0: 

mm.seek(0)
os.write(1,mm.readline())
os.write(1,b"\n")
mm.close()

else:
mm.close()
os.wait()



Addresses and values in Python

Everything in Python is an object

Every object has  a type, an address, and a value

Type and address never change

A mutable object can  change its value
list, dict, set, bytearray

An immutable object can’t
int, float, string, …

@ value

0x0000: 04

0x0001: D2



Addresses and values in Python
jfornes@tiacos:~/iolab$ python3

Python 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more 
information.
>>> x = 3
>>> y = 3
>>> id(y)
94436516330880
>>> id(x)
94436516330880
>>> id(3)
94436516330880
>>> x += 2
>>> id(x)
94436516330944

>>> id(5)
94436516330944
>>> type(x)
<class 'int'>
>>> type(y)
<class 'int’>
>>> l = ['A','B','C']
>>> l
['A', 'B', 'C']
>>> p = l
>>> id(p)
140681145616832
>>> id(l)
140681145616832
>>> p.append('D')
>>> l
['A', 'B', 'C', 'D']



Mutable vs Immutable Objects in Python

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
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Summary

Physical address space
Memory addresses

Logical address space
What the program sees

MMU
Translates logical addresses to physical addresses

Virtual memory
Enables to have more logical memory than physical

TLB
Cache fo the page table

Using too much memory can delay your program significantly
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