
COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Memory Management

Jordi Fornés

Bioinformatics

202/2 Spring Term

Concepts
Physical memory vs. Logical memory

Process address space

Addresses assignment to processes

Operating system tasks

Hardware support

Optimizations

System calls

Addresses and values in Python

Memory Management

The CPU can only access directly to memory and the register bank
Instructions and data must be located in main memory

The CPU sends out logical addresses (logical @s)

The requested instructions/data are located in physical addresses

Logical @s may not directly match the correspondent physical @s
The OS in conjunction with the Hardware manages this translation

logical @ → physical @

The process uses virtual memory to become larger than main memory size
Logical addresses point to virtual memory locations

Program Loading

The OS loads the program from the disk to Physical Memory
1) Request & reserve space in main memory

2) Load the program

3) Start running

ProgB.exe

Operating
System

Binary file in the
disk

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 1

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 0

Process
Contents

in Memory

PCB

Multiprogrammed OS

Memory regions are private per process
In multiprogrammed systems (multiple processes
are alive at a time) the OS must protect mem regions

Contents usually are distributed in remote
physical memory locations

The OS memory zone holds the kernel and
all required internal data and routines

The OS memory space NEEDS protection

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 1

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 0

Process 1

Process 3

Process 2

Process 5

Process 4

OS Processes PCBs

Processes contents

0x00000000

0xFFFFFFFF
Physical memory

Course 2023/2024 T3

Process Contents in Memory

Stack: dynamic mem
Function arguments

Local Variables

Shared libraries: Code, data…

Heap: dynamic mem
Mem allocated at runtime

Data: .bss & .data
Global variables

Code: .text
Instructions

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 1

Core

Core

Core

Core

L

2
L

2
L

2
L

2

L

3
RAM Node 0

P1

P3

P2

P5

P4

OS

0x00000000

0xFFFFFFFF

Stack

Heap

Data

Code

0xFFFFFFFF

Shared libraries

0x00000000

Physical memory Virtual memory

Multiprogrammed systems

1-Process A is running
2-Context switch to C

MMU

translation
and protection

CPU
logical@

physical@

Physical

Memory

Process A

Process B

Process C
physical@

Process A

Process C

Paging: main concepts

Page
Fixed size amount of memory

Its size needs to be power of 2 to simplify the hardware

In the order of few Kbytes (4Kb, 8Kb, …)

Logical memory is divided into pages (page)

Physical memory is divided into pages (frame)

The OS maps logical pages into frames (physical pages)
We need HW support

This support I called MMU (Memory Management Unit)

Memory addresses

If we envision the memory as a vector of bytes
The address is “the index of the vector”

Memory addresses are between 16 to 64 bits long
The exact length depends on the processor architecture

Let’s assume a 32-bit memory address and 4K size pages
To address 4K bytes = 4096 bytes I need 12 bit

To get the physical address, we just need to change the page, not the offset

page offset

20 bits 12 bits

32 bits

Page and offset: example

Computing the page and object of an address
Logical addresses  32 bits
Page size  4Kbytes 12 bits
What page and what offset has address 12356?

Using the bits
12356 = 0000 0000 0000 0000 0011 0000 0100 0100
Page = 0000 0000 0000 0000 0011 = 3
Offset = 0000 0100 0100 = 68

Dividing
Page = ⎣12356/4096⎦ = 3
Offset = 12356 module 4096 = 68

MMU simplified schema

page offset frame offset

MMU

Page table

Translates

pages frames

the MMU is a hardware component which, at least, offers address translation
and memory access protection. It can also support other management tasks.
OS is responsible for configuring the MMU with the correct address
translation values for the current process in execution

Which logical @ are valid and which are their corresponding physical @
Guarantees that each process gets assigned only its own physical @

HW support to translation and protection between processes
MMU receives a logical @ and translates it to the corresponding physical address
using its data structures

It throws an exception to the OS if the logical address is not marked as valid or if it has not
associated a physical address

OS manage the exception according to the situation
For example, if the logical address is not valid it can kill the process (SISEGV signal)

Memory Management Unit

When does the OS need to update the address translation
information???

Case 1: When assigning memory
Initialization when assigning new memory (mutation, execlp)
Changes in the address space: grows/diminishes. When
allocating/deallocating dynamic memory

Case 2: When switching contexts
For the process that leaves the CPU: if it is not finished, then keep in its data
structures (PCB) the information to configure the MMU when it resumes the
execution
For the process that resumes the execution: configure the MMU

Hardware support: translation

It is performed in the same cases than the memory assignment

It also enables to implement protection against undesirable
accesses/type of accesses

Invalid logical addresses
Valid logical addresses but wrong type of access (writing on a read-only region)
Valid logical address and apparently “wrong” type of access due to some
optimization implemented by the OS

For example, COW (we will explain it later)

For all cases → exception captured by the CPU and managed by the OS
OS has all the information about the description of the process address space
and can check if the exception is really due to wrong access or not

HW Support : Protection

Virtual memory
Extension for the on-demand loading optimization

In addition to load pages on-demand, it enables the system to take out pages
that are not needed at a given time

Goal
To reduce amount of physical memory assigned to a process

A process only needs physical memory to hold the current instruction and the data that this
instruction references

To increase potential multiprogramming grade
Amount of concurrent processes

Optimizations: Virtual memory

Virtual memory based on paging
Logical address space of a process is distributed across physical memory
(present pages) and swap area (non-present pages)

Optimizations: Virtual memory (III)

swap

Logical

address
space

Physical

Memory

MMU

OS

Virtual memory: concept

Let’s examine an address
32-bit memory addresses  memory size can be 4.294.967.296 bytes

4G per process

64-bit memory addresses  16 Exabytes x process

No system has so much physical memory

How about putting in disk what does not fit in memory?
This would allow to have much larger “memories”
What we need

Presence bit  Extra bit in each page-table entry to know whether a page is in memory

Dirty bit  Extra bit in each page-table entry to know whether a page has been modified

Page fault mechanism

Mechanism to find a page into the disk (we can use the page table)

Replacing algorithm

Virtual memory: how it works

When the MMU translates a page it can
Find the presence bit to 1 = the page is in memory
 same as we have already explained

Find the presence bit to 0 = the page is NOT in memory
 Raise an interruption (call the OS to solve the ”problem”)

Page fault
Reaction of the OS to a missing page
Decide which page to move out of memory (if no empty memory available)

FIFO

Not Recently Used (needs hardware support)

Move the page to disk if it has been modified

Bring the page from disk and update page table
Restart memory access

TLB and page table

Page table can be very big
Where do I put it?  memory

Putting the page table in memory is very slow
Every memory access needs the page table
Every access would need to access the memory twice

PANIC!!!

Solution  TLB (Table lookup buffer)
Keep a portion of the page table in the MMU
As programs have locality this works very well
TLB misses  similar to page faults

Memory access steps:

Virtual memory

lo
gi

ca
l@
TLB

access

physical@

PT access

valid logical@ and
present?

process yes

allocates

frame

no

updates TLB
yes

no

valid
logical@?

hit?

generates

signal

memory access

reads

page
updates

PT

restart

instruction

yes

no

starts memory

replacement, if needed

blocks

process

Page fault

Effects of using virtual memory:
Physical memory can be smaller than the sum of the address spaces of the
loaded processes

Physical memory can be smaller than the logical address space of a single
process

Accessing to non-present pages is slower than accessing to present pages
Exception + page loading

It is important to reduce the number of page faults

Virtual memory

Thrashing
Process is in thrashing when

It spends more time performing page swapping than executing program code
It is not able to keep simultaneously in memory the minimum number of pages required
to advance with the execution.

Memory system is overloaded
Detection: to control page fault rate per process
Management: to control multiprogramming grade and to swap out processes

Virtual memory

Goal: to delay allocation/initialization of physical memory until it is really
necessary

If a new zone is never accessed → it is not necessary to assign physical memory to it
If a copied zone is never written → it is not necessary to replicate it
Save time and memory space

Example: fork
Delays copy of each region (code, data, etc.) until it is accessed for writing
Avoids physical copy for those regions that are only read (for example, code region)
It is usually implemented at page-level: frames are allocated/copied when pages are
accessed to write

It can be applied
In the address space of one process: dynamic memory case
Between processes: fork case

Optimizations: COW (Copy on Write)

Overview: OS needs a mechanism to detect writes and to perform the
physical memory allocation and the copy

When the logical memory region is allocated:
OS registers in the MMU the new region with the same physical memory than the
source region
OS registers the new region in the data structure describing the address space of the
process (in the PCB), indicating which are the real permissions of access
OS marks in the MMU both new region and source region as read-only regions

When a process tries to write on the new region or on the source region:
MMU throws an exception to the OS. OS management code performs the actual
allocation and copy, updates MMU with the real permission for both regions and
resets the instruction

COW: Implementation

Process A physical memory assignment:
Code: 3 pages, Data: 2 pages, Stack: 1 page, Heap: 1 page

Let’s consider that process A executes a fork system call. Just after fork:
Total physical memory:

Without COW: process A= 7 pages + child = 7 pages = 14 pages
With COW: process A= 7 pages + child =0 pages = 7 pages

Later on the execution… depends on the code executed by the processes, for example:
If child executes an exec (and its new address space uses 10 pages):

Without COW: process A= 7 pages+ child = 10 pages= 17 pages
With COW: process A= 7 pages+ child A=10 pages= 17 pages

If child does not execute an exec, at least code will be always shared between both processes and the rest of the
address space depends on the code. If only the code is shared:

Without COW: process A= 7 pages+ child A= 7 pages= 14 pages
With COW: process A= 7 pages+ child A=4 pages= 11 pages

In general, in order to compute the amount of required physical memory it is necessary to compute
how many pages are modified (and thus cannot be shared) and how many pages are read-only (and
thus can be shared)

COW: example

Goal: to minimize number of page faults

Overview: to predict which pages will need a process and load them
in advance

Parameters to consider:
Prefetch distance: time between the page loading and the page reference

Number of pages to load in advance

Some simple prediction algorithms:
Sequential

Strided

Optimizations: Prefetch

Storage hierarchy

S
to

ra
g
e
 c

a
p
a
c
it
y

a
c
c
e
s
s
 s

p
e
e
d

less

lessmore

more

System calls

Allocation/deallocation memory
Not used in python

Internal to create/destroy objects

Mmap
Maps a file into memory

Allows the program to access a file as if it were a vector in memory

mmap.mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE|P
ROT_READ, access=ACCESS_DEFAULT[, offset])

fileID file descriptor of an open file
length (if 0 then size of the file)
Flags

MAP_SHARED

MAP_PRIVATE

offset must be a multiple of PAGESIZE

Mmap: example

▪ import mmap

import os

fd = os.open("FILE",

os.O_RDWR)

i= 0

while i < 10:

buff = os.read(fd,1)

print (buff)

i = i + 1

os.close(fd)

▪ import mmap

import os

fd = os.open("FILE",

os.O_RDWR)

i = 0

v = mmap.mmap(fd,0)

while i < 10:

print (v[i]))

i = i + 1

v.close()

os.close(fd)

Mmap: example of reading a file

import mmap
import os
import sys

fd = os.open("SRR000049.fastq",os.O_RDONLY)
mm = mmap.mmap(fd,0, access=mmap.ACCESS_READ)
header = mm.readline()
print(header)
mm.seek(0)
i = mm.find(b'=')
print("Lenghth of the sequence = ",mm[i+1:i+4].decode())
mm.close()
os.close(fd)

Mmap: example of scratchpad between parent and child

import mmap
import os

mm = mmap.mmap(-1, 12)
mm.write(b"Hello world!")
pid = os.fork()
if pid == 0:

mm.seek(0)
os.write(1,mm.readline())
os.write(1,b"\n")
mm.close()

else:
mm.close()
os.wait()

Addresses and values in Python

Everything in Python is an object

Every object has a type, an address, and a value

Type and address never change

A mutable object can change its value
list, dict, set, bytearray

An immutable object can’t
int, float, string, …

@ value

0x0000: 04

0x0001: D2

Addresses and values in Python
jfornes@tiacos:~/iolab$ python3

Python 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> x = 3
>>> y = 3
>>> id(y)
94436516330880
>>> id(x)
94436516330880
>>> id(3)
94436516330880
>>> x += 2
>>> id(x)
94436516330944

>>> id(5)
94436516330944
>>> type(x)
<class 'int'>
>>> type(y)
<class 'int’>
>>> l = ['A','B','C']
>>> l
['A', 'B', 'C']
>>> p = l
>>> id(p)
140681145616832
>>> id(l)
140681145616832
>>> p.append('D')
>>> l
['A', 'B', 'C', 'D']

Mutable vs Immutable Objects in Python

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

Summary

Physical address space
Memory addresses

Logical address space
What the program sees

MMU
Translates logical addresses to physical addresses

Virtual memory
Enables to have more logical memory than physical

TLB
Cache fo the page table

Using too much memory can delay your program significantly

Bibliography

Operating System
Silberschatz, A; Galvin, P. B; Gagne, G. 2019. Chapters (11-15)

https://discovery.upc.edu/permalink/34CSUC_UPC/rdgucl/alma991004148389706711

Python documentation
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/mmap.html

Computer Systems. A programmers perspective
Randal E. Bryant, David R. O'Hallaron 2015. Chapter 10.

https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma9910040625897067
11

https://discovery.upc.edu/permalink/34CSUC_UPC/rdgucl/alma991004148389706711
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/mmap.html
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991004062589706711
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991004062589706711

	Slide 1: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
	Slide 2: Concepts
	Slide 3: Memory Management
	Slide 4: Program Loading
	Slide 5: Multiprogrammed OS
	Slide 6: Process Contents in Memory
	Slide 7: Multiprogrammed systems
	Slide 8: Paging: main concepts
	Slide 9: Memory addresses
	Slide 10: Page and offset: example
	Slide 11: MMU simplified schema
	Slide 12: Memory Management Unit
	Slide 13: Hardware support: translation
	Slide 14: HW Support : Protection
	Slide 15: Optimizations: Virtual memory
	Slide 16: Optimizations: Virtual memory (III)
	Slide 17: Virtual memory: concept
	Slide 18: Virtual memory: how it works
	Slide 19: TLB and page table
	Slide 20: Virtual memory
	Slide 21: Virtual memory
	Slide 22: Virtual memory
	Slide 23: Optimizations: COW (Copy on Write)
	Slide 24: COW: Implementation
	Slide 25: COW: example
	Slide 26: Optimizations: Prefetch
	Slide 27: Storage hierarchy
	Slide 28: System calls
	Slide 29: Mmap: example
	Slide 30: Mmap: example of reading a file
	Slide 31: Mmap: example of scratchpad between parent and child
	Slide 32: Addresses and values in Python
	Slide 33: Addresses and values in Python
	Slide 34: Mutable vs Immutable Objects in Python
	Slide 35: Summary
	Slide 36: Bibliography

