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Basics Concepts of I/O



What’s I/O? 

Definition: information transfer between a process and the outside.
Data Input: from the outside to the process

Data Output: from the process to the outside

 (always from the  process point of view)

In fact, basically, processes perform computation and/or I/O

Sometimes, even, I/O is the main task of the process:
for instance, web browsing, shell, word processor

I/O management: Device (peripherals) management to offer an usable, 
shared, robust and efficient access to resources



I/O Devices



Physical Storage Devices
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Solid State Drive
(SSD)

Hard Disk
USB Drive

controller
connector NAND

Flash memory

platters

connector controller

Non-volatile memory to save data

Similar vs Different components
Impact on performance and capacity



HW view : Accessing physical devices
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mov ds:[XX], axin  ax, 10h

out 12h, ax

int



How are data physically saved?
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Speed: rpm
Connector Bandiwth: Gbps

Any storage device needs to organize the pool of memory
E.g.: DVD, hard-disk, pen-drive, etc.

Sector: The smallest unit of data that can be read/written
Defined by the hardware

Fixed size (tipically 512 Bytes)

Some parameters
that impact on 
performance



Basic system calls



Some I/O operations are time consuming 

 A process cannot be idle in the CPU 
 OS blocks the process (RUN→BLOCKED)

Default behaviour can be modified with the flag O_NONBLOCK

Blocking and non-blocking operations

https://docs.python.org/3/library/os.html#os.O_NONBLOCK


I/O system calls

os.open: Given a pathname, flags and mode returns an integer called the user file descriptor

os.read: Reads n bytes from a device (identified by the file descriptor) and saved in memory

os.write: Reads a bytestring from memory and writes them to the device (identified by the file 

descriptor)

os.close: Releases the file descriptor and and leaves it free to be reused

os.dup/dup2: Duplicates the file descriptor. Copies a file descriptor into the first free slot of the 

user file table. It increments the count of the corresponding file table entry, which now has one more fd 

entry that points to it.

os.pipe: Allows transfer of data between processes in a first-in-first-out manner

os.lseek: Changes the offset of a data file (an entry in the File Table pointed by the fd).

Syscalls open, read  & write are blocking



So, how do you associate a name with a virtual device?
fd = open(pathname, flags [, mode]);

open syscall links a device (file name)  to a virtual device (field descriptor)

Is the first step that a process must take to access  file data. It checks 
permissions. After correct completion, process can call read/write multiple 
times without check permissions again.
open returns a file descriptor. Other file operations, such as reading, writing, 
seeking and closing the file use the file descriptor.

pathname is a file name.

flags indicate the type of open. At least, one of them

O_RDONLY (reading)

O_WRONLY (writing)

O_RDWR (reading & writing)

mode gives the file permissions if the file is being created.

Open 



Open (cont): effects on the kernel data structures

The kernel allocates an entry in the file descriptor table. It will always be the first free entry.
The kernel records the index of the File Table in this entry

The kernel allocates an entry in the file table for the open file. It contains a pointer to the in-
core inode of the open file, and a field that indicates the byte offset in the file where the kernel 
expects the next read or write to begin. 

The kernel associates these structures in the corresponding DD (MAJOR of the symbolic name). 
It may happen that different entries of the FT point to the same DD

Open: data structure

...

open(“name”,O_RDONLY)

...
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n = read(fd, buffer, count);

Asks for reading count bytes (characters) from the device pointed by fd

If there is great or equal count bytes available, it reads count bytes

If there is less than count bytes, it reads all of them

If there is no bytes, it’s up to the device behaviour:

Blocking process until data available

Returns 0 immediately 

If EOF, returns 0 immediately 

The meaning of EOF it’s up to the device behaviour

Returns n, the number of bytes actually read

The kernel updates the offset in the file table to the n; consequently, successive reads of a file 
deliver the file data in sequence

Read
Num. of bytes actually read 

File descriptor returned by open

Address of a data structure in the user process

Num. of bytes the user wants to read



n = write(fd, buffer, count);

Asks for writing count bytes (characters) to the device pointed by fd
If there is space on device for count bytes, it writes count (the kernel allocates a new block if the file does
not contains a block that corresponds to the byte offset to be written)

If there is less, it writes what fits

If there is no space left on device, it’s up to the device behaviour:

Blocking process until space available

Returns 0 immediately 

Returns n, the number of bytes actually written
The kernel updates the offset in the file table to the n; consequently, successive 
writes of a file update the file data in sequence (when the write is complete, the kernel updates the file size entry in the inode if 
the file has grown larger)

Write

Num. of bytes actually written 

File descriptor returned by open

Address of a data structure in the user process

Num. of bytes the user wants to read



Example: writing to a device

...

print(...)

...

...

write(1,...)

...

...

pushl $1

int 0x80

...

Python library

C library

System 
library

user Operating System

syscall

0
1
2

User 

file descriptor
table

Code and 

data structures
logical level

device driver:
write_dev()

Device programming
returns result 

I/O
 su

ssystem



newfd = dup(fd);

Where fd is the file descriptor being duped and newfd is the new file descriptor that references the file. 

Copies a file descriptor into the first free slot of the user file descriptor table.

Returns newfd

newfd = dup2(fd, newfd);

Similar to dup, but the free slot is forced to be newfd

If newfd already refers to an open file, it is closed before duped

close(fd);

Where fd is the file descriptor for the open file.

The kernel does the close operation by manipulating the file descriptor and the corresponding  file table and inode table.

If the reference count of the file table entry is greater than 1 (dup, fork) then the kernel decrements the count and the 
close completes.

If the table reference count is 1, the kernels frees the entry and releases the in-core inode (If other processes still reference the 
inode, the kernel decrements the inode reference count but leaves it allocated).

Dup/dup2/close



Pipes allow transfer of data between processes in a first-in-first-out manner and they allow 
also synchronization of process execution.

pipe(fd_vector); // Device for FIFO communications

Creates an unnamed pipe. Returns 2 file descriptors fd_vector[0] for reading, 
fd_vector[1] for writing the pipe (and  allocates corresponding File Table entries).

There is no name in the VFS, so there is no any call to open.

Only related processes, descendants of a processes that issued the pipe call can 
share access to unnamed pipes

Named pipes are identical, except for the way that a process initially accesses them

mknod("my_pipe", S_IFIFO | 0600, 0);

Creates a pipe, named “my_pipe”, in the VFS and, hence, processes that are not 
closely related can communicate.

Processes use  the open syscall for named pipes in the same way  that they open 
regular files. 

The kernel allocates 2 entries in the File Table and 1 in the Inode Table.

pipe



Usage

Processes use the open system call for named pipes, but the pipe system call to create unnamed pipes. 

Afterwards processes use regular system calls for files, such as read and write, and close when manipulating pipes.

Pipes are bidirectional, but ideally each process uses it in just one direction. In this case the kernel manages  synchronization of 
process execution. 

Blocking device:

Opening: a process that opens the named pipe for reading will sleep until another process opens the named pipe for writing, 
and vice versa.

Reading: if the pipe is empty, the process will typically sleep until another process writes data into the pipe.

If the count of writer processes drops to 0 and there are processes asleep waiting to read from the pipe, the kernel awakens 
them, and they return from their read calls without reading any data.

Writing: if a process writes a pipe and the pipe cannot hold all the data, the kernel marks the inode and goes to sleep 
waiting for data to drain from the pipe.

If there are no processes reading from the pipe, the processes that writes the pipe receives a signal SIGPIPE → the 
kernel awakens the sleeping processes

Processes should close all non-used files descriptors, otherwise -> Blocking!

Data structures

2 entries in the user File Descriptor Table (R/W)

2 entries in the File Table (R/W)

1 entry in the in-core Inode Table

pipe



lseek changes the File Table byte offset (the read-write pointer) . It 
allows direct access by position in data files (or even sequential devices, 
like tapes).

Offset is 0 after an open system call (except with APPEND flag).

Offset is increased by read and write system calls.

Offset can be modified by the user  with lseek system call

new = lseek(fildes, offset, origin)

The value of the pointer depends on origin:
SEEK_SET: pointer = offset.Set the pointer to offset bytes from the beginning of the file.

SEEK_CUR: pointer += offset. Increment the current value of the pointer by offset.

SEEK_END: pointer = file_size + offset. Set the pointer to the size of the file plus offset bytes.

offset can be negative.

lseek



examples



Reading from the standard input and writing to the standard output

Note:

Reading while there are data (n==0), that’s up to the device. The total amount of syscall depends on the number of 
bytes to be read

Processes conventionally have access to three files: its standard input (0), its standard output (1) and its standard 
error(2). 

Processes executing at a terminal typically use the terminal for these three files.

But each may be "redirected" independently to any logical device that accepts the operations of reading and/or 
writing.

For instance:

Byte-by-Byte access

while ((n = read(0, &c, 1)) > 0)

write(1, &c, 1);

#example1 → input=terminal, output=terminal

#example1 <disp1 → input=disp1, output=terminal

#example1 <disp1  >disp2 → input=disp1, output=disp2



The same, but reading blocks if bytes (chars in this case)

Note:

You must write n bytes

Process is asking for SIZE bytes, however it reads n bytes

What about performance? How many system calls are executed?

Buffer in user space access

char buf[SIZE];

...

while ((n = read(0, buf, SIZE)) > 0)

write(1, buf, n);



Data communication using pipes
Program a process schema 
equivalent to the figure:

2 pipes

P1 sends to  pipe1 and 
receives from pipe2

P2 the opposite symmetrically

P2P1

1. int pipe1[2], pipe2[2],pidp1,pidp2;

2. pipe(pipe1);

3. pipe(pipe2);

4. pidp1=fork();

5. if (pidp1==0){

6. close(pipe1[0]);

7. close(pipe2[1]);

8. p1(pipe2[0],pipe1[1]);

9. exit(0);

10.}

11.close(pipe1[1]);

12.close(pipe2[0]);

13.pidp2=fork();

14.if (pidp2==0){

15. p2(pipe1[0],pipe2[1]);

16. exit(0);

17.}

18.close(pipe1[0]);close(pipe2[1]);

19.while(waitpid(-1,null,0)>0);

void p1(int fdin,int fdout);

void p2(int fdin,int fdout);



What does this code do?

And this one?

Random access and size evaluation

fd = open(“abc.txt”, O_RDONLY);

while (read(fd, &c, 1) > 0) {

write(1, &c, 1);

lseek(fd, 4, SEEK_CUR);

}

fd = open(“abc.txt”, O_RDONLY);

size = lseek(fd, 0, SEEK_END);

printf(“%d\n”, size);



Be careful The parent process must close fd[1] if it does not want to be blocked!

pipes and blocking
int fd[2];

...

pipe(fd);
pid = fork();

if (pid == 0) { // child

while (read(0, &c, 1) > 0) {

// Reads, process and send data

write(fd[1], &c, 1);

}

}

else { // parent

while (read(fd[0], &c, 1) > 0) {

// Receives, process and send data

write(1, &c, 1);

}

}

...



What does this code do?

Sharing the read-writer pointer

...

fd = open(“fitxer.txt”, O_RDONLY);

pid = fork();

while ((n = read(fd, &car, 1)) > 0 )

if (car == ‘A’) numA++;

sprintf(str, “El número d’As és %d\n”, numA);

write(1, str, strlen(str));

...



What does this code do?

Non shared read-write pointer

...

pid = fork();

fd = open(“fitxer.txt”, O_RDONLY);

while ((n = read(fd, &car, 1)) > 0 )

if (car == ‘A’) numA++;

sprintf(str, “El número d’As és %d\n”, numA);

write(1, str, strlen(str));

...



What does this code do?

Redirection of standard input and output

...

pid = fork();

if ( pid == 0 ) {

close(0);

fd1 = open(“/dev/disp1”, O_RDONLY);

close(1);

fd2 = open(“/dev/disp2”, O_WRONLY);

execv(“programa”, “programa”, (char *)NULL);

}

...



Redirection and pipes 
...

pipe(fd);

pid1 = fork();

if ( pid1 != 0 ) { // parent

pid2 = fork();

if ( pid2 != 0 ) { // parent

close(fd[0]); close(fd[1]);

while (1);

}

else { // child 2

close(0); dup(fd[0]);

close(fd[0]); close(fd[1]);

execlp(“programa2”, “programa2”, NULL);

}

}

else { // child 1

close(1); dup(fd[1]);

close(fd[0]); close(fd[1]);

execlp(“programa1”, “programa1”, NULL);

}



Kernel data structures



Data structure for storing file system metadata with pointers to its data. Each 
inode represents an individual file. It stores:

size
type
access permissions
owner and group
file access times
number of links (number of file names pointing to the inode) 
pointers to data (multilevel indexation) → see below, at the end of this section

All information about a file, except file names

Stored on disk, but there is an in-core copy  for access optimization

Kernel data structures: inode



Each process
User Field Descriptor Table (FDT): per-process open-file table  (saved in the task_struct, ie, PCB)

Records to which  files the process is accessing 
The file is accessed through the file descriptor, which is an index to the FT
Each file descriptor is a virtual device
Each  field descriptor points to an entry in the Open File Table (FT)
Fields we’ll assume: num_entry_OFT 

Global: 
Open File Table (FT): 

System-wide open-file management
One entry can be shared among several processes and one process can point to several entries.
One entry of FT points to one entry of the Inode Table (IT)
Fields we’ll assume: num_links, mode , offset, num_it_entry

Inode Table (IT): 
Active-inode table. One entry for each opened physical object. Including DD routines. 
Memory (in-core) copy of the disk data for optimization purposes,
Fields we’ll assume: num_links, inode_data

Buffer Cache
Memory zone to hold any I-node and data block transfer from/to the disk
If the requested I-node or block is in the cache, the access to the disk is not performed

Kernel data structures



Kernel data structures

...

os.write(1,...)

...

user system

process

User file 
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I/O and  fork

Child process inherits a copy of the parent process file descriptor table.

All open entries point to the same File Table entries

Parent and child sharing devices opened before fork system call

Next calls to open will be independent

I/O and concurrent execution (1)

user system

open(“f1”,O_RDONLY)

fork()

open(“f1”,O_WRONLY)
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I/O and  exec

New process image keeps the same process’ I/O internal 
structures

fork+exec allows I/O redirection before process image 
change

I/O and concurrent execution (2)

user system

open(“f1”,O_RWDR)

if (fork()==0){

close(0);

open(“f2”,???)

exec(...)

process 1 FDT FT IT

x
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close(0);
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exec(...)
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File system



Physical Storage Devices
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Non-volatile memory to save data

Similar vs Different components
Impact on performance and capacity



How are data physically saved?

50

Speed: rpm
Connector Bandiwth: Gbps

Any storage device needs to organize the pool of memory
E.g.: DVD, hard-disk, pen-drive, etc.

Sector: The smallest unit of data that can be read/written
Defined by the hardware

Fixed size (tipically 512 Bytes)

Some parameters
that impact on 
performance



How is a storage device organized?

51

Block: A group of sectors (the smallest unit to allocate space)
Defined by the OS (when formatting the device)

But, what is the best block size????
If it is likely to use large files…

Large blocks

If it is likely to use short files…
Short blocks

What is the impact of a bad block size selection???
Too large: fragmentation (waste of space)
Too short: degrade performance too many accesses to the device

Sectors

1 Block = 4 Sectors

Unused 
space

Used 
space



Virtual File System (VFS)

52

An abstraction layer to manage different types of file system
It provides a single system call interface for any type of file system
VFS for UNIX/Linux. Other Oses use similar approaches

Types of File System
FAT (File Allocation Table)

Removable drives

exFAT (Extended FAT)
Removable drives larger tan 4GB

NTFS (New Technology Transfer)
Windows

I-node based file systems (UNIX/Linux)
Ext3, ext4, Reiser4, XFS, F2FS

Cloud File System
GlusterFS, Ceph, HadoopFS, ElasticFileSystem (Amazon)

https://en.wikipedia.org/wiki/Comparison_of_file_systems

https://en.wikipedia.org/wiki/Comparison_of_file_systems


File Systems

53

Swap space: in UNIX/Linux OS is a special file system that extends 
main memory

Windows implements swap space in a single resizable file

FUSE: Filesystem in Userspace
Let’s non-priviledge users implement their own file system without modifying 
the kernel (it is executed in user space rather tan kernel space)

E.g.: GDFS (Google Drive), WikipediaFS, propietary File Systems

Different File Systems offer different features that impact on 
performance, reliability, resilience, security, etc



Journaling

54

Transaction based File System
Keep track of changes not yet committed to the file system
It records the changes in a “journal” file

It has a dedicated area in the file system

In case of system failure or outage…
The file system can be brought back fast and with lower likelihood of errors

E.g.: After a crash, replay the last updates from the “journal”

Some File Systems that implement Journaling
Ext3, ext4, ReiserFS, XFS, JFS



RAID: Redundant Array of Independent Disks

55

Storage virtualization technology that combines multiple physical 
storage drives into a single logical unit

Software driver vs hardware controller

Impact on performance and effective capacity

Several approaches (can be combined)
RAID 0: Stripping → distributed data

RAID 1: Mirroring → replicated data
RAID 1+0 vs RAID 0+1

RAID 5: with distributed parity blocks



Performance Impact: handling blocks
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Every file system has its own mechanism to handle…
Occupied/free blocks

The blocks of a given file (i.e. how to access the contents of a given file)

Depending on the file system, the implementa
For example:

FAT: has a global table with as many entries as blocks has the drive

Linked-list based file access

I-node based: has a structure called I-node to hold all the information to manage a file

Index based file access (a.k.a. multi-level index). The index is hold by every I-node



I-Node Based File System

57

Some fields of the I-Node:
I-Node ID

Size

Type of file (regular file, directory, named pipe, socket, etc.)

Protection (Read / Write / Execute  (RWX)     for       Owner, Group, Others)

Ownership

Timestamps

Number of Links (# direct relations between a symbolic name and I-Node ID)

Pointers to blocks of data (multi-level index). It use to has 12-13 pointers.

Data

SuperBlock &

Management

Inodes

Partition

BOOT



Directories: Organizing files
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Directory: Logical structure to organize files
Pathname: Relative (from any folder) vs Absolute (from the root folder)

It is a particular type of file managed by the OS
“/” is the root folder

Every partition has its own root folder (I-node ID 2)

“.” and “..” are mandatory entries in any directory
Even though the directory has no files

Hardlink: A direct relation between name and I-node ID
Name I-node

. 2

.. 2

home 3

App 4

/(2)

home(3)

usr1(5)

F1(6) F2(7)

App(4)

Name I-node

. 5

.. 3

F1 6

F2 7

Directory: / Directory: /home/usr1



Directories: Organizing files

60

Directories are organized as graphs
A given file can be accessed from different directories

Sharing files
Hardlinks

It only needs a new entry in a directory (name→I-node ID)

Softlinks
A new file that comprises a pathname

Similar to shortcuts in Windows

Pros/Cons/restrictions lead to use one or the other

/(2)

home(3)

usr1(5)

F1(6) F2(7)

Appl(4)

HLF2(7) SLF2

(8)



Mount

61

Publishing the contents of a disk partition on the file system
Linux command line: 

$ mount -t ext4 /dev/hda1 /home  #mounting the home partition

$ unmount /dev/hda1              #unmounting the home partition

/

bin

etc

usr

mnt

home

cdrom

dvd

user

cdrom

user1

user2

user3

/

movie1

movie2

movie3

/

/

bin

etc

usr

mnt

home
cdrom

dvd

user1

user2

user3 movie1

movie2

movie3
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