
COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Input / Output management

Jordi Fornés

Bioinformatics

2025/26 Spring Term

Contents

Basic concepts of I/O

Basic system calls

Examples

Kernel data structures

File systems

Basics Concepts of I/O

What’s I/O?

Definition: information transfer between a process and the outside.
Data Input: from the outside to the process

Data Output: from the process to the outside

 (always from the process point of view)

In fact, basically, processes perform computation and/or I/O

Sometimes, even, I/O is the main task of the process:
for instance, web browsing, shell, word processor

I/O management: Device (peripherals) management to offer an usable,
shared, robust and efficient access to resources

I/O Devices

Physical Storage Devices

6

connector
controller

NAND
Flash Memory

Solid State Drive
(SSD)

Hard Disk
USB Drive

controller
connector NAND

Flash memory

platters

connector controller

Non-volatile memory to save data

Similar vs Different components
Impact on performance and capacity

HW view : Accessing physical devices

Control Register

State Register

Data Register

Controller PeripheralPorts

Bus

M
em

o
ry

I/O Bus

CPU

mov ds:[XX], axin ax, 10h

out 12h, ax

int

How are data physically saved?

8

Speed: rpm
Connector Bandiwth: Gbps

Any storage device needs to organize the pool of memory
E.g.: DVD, hard-disk, pen-drive, etc.

Sector: The smallest unit of data that can be read/written
Defined by the hardware

Fixed size (tipically 512 Bytes)

Some parameters
that impact on
performance

Basic system calls

Some I/O operations are time consuming

 A process cannot be idle in the CPU
 OS blocks the process (RUN→BLOCKED)

Default behaviour can be modified with the flag O_NONBLOCK

Blocking and non-blocking operations

https://docs.python.org/3/library/os.html#os.O_NONBLOCK

I/O system calls

os.open: Given a pathname, flags and mode returns an integer called the user file descriptor

os.read: Reads n bytes from a device (identified by the file descriptor) and saved in memory

os.write: Reads a bytestring from memory and writes them to the device (identified by the file

descriptor)

os.close: Releases the file descriptor and and leaves it free to be reused

os.dup/dup2: Duplicates the file descriptor. Copies a file descriptor into the first free slot of the

user file table. It increments the count of the corresponding file table entry, which now has one more fd

entry that points to it.

os.pipe: Allows transfer of data between processes in a first-in-first-out manner

os.lseek: Changes the offset of a data file (an entry in the File Table pointed by the fd).

Syscalls open, read & write are blocking

So, how do you associate a name with a virtual device?
fd = open(pathname, flags [, mode]);

open syscall links a device (file name) to a virtual device (field descriptor)

Is the first step that a process must take to access file data. It checks
permissions. After correct completion, process can call read/write multiple
times without check permissions again.
open returns a file descriptor. Other file operations, such as reading, writing,
seeking and closing the file use the file descriptor.

pathname is a file name.

flags indicate the type of open. At least, one of them

O_RDONLY (reading)

O_WRONLY (writing)

O_RDWR (reading & writing)

mode gives the file permissions if the file is being created.

Open

Open (cont): effects on the kernel data structures

The kernel allocates an entry in the file descriptor table. It will always be the first free entry.
The kernel records the index of the File Table in this entry

The kernel allocates an entry in the file table for the open file. It contains a pointer to the in-
core inode of the open file, and a field that indicates the byte offset in the file where the kernel
expects the next read or write to begin.

The kernel associates these structures in the corresponding DD (MAJOR of the symbolic name).
It may happen that different entries of the FT point to the same DD

Open: data structure

...

open(“name”,O_RDONLY)

...

user system

process User file
descriptor table

File table Inode table

virtual logical physical

0
1
2
3

-RW

Per-process Per-system
(shared)

Per-system
(shared)

0

0

1

2

0R

0
1
2
3

W -
2
1

1

0 1 x

1 1 Y

2 1 j

0

1

2

Inode of

console

Inode of

another dev.

Inode of file

“name”

n = read(fd, buffer, count);

Asks for reading count bytes (characters) from the device pointed by fd

If there is great or equal count bytes available, it reads count bytes

If there is less than count bytes, it reads all of them

If there is no bytes, it’s up to the device behaviour:

Blocking process until data available

Returns 0 immediately

If EOF, returns 0 immediately

The meaning of EOF it’s up to the device behaviour

Returns n, the number of bytes actually read

The kernel updates the offset in the file table to the n; consequently, successive reads of a file
deliver the file data in sequence

Read
Num. of bytes actually read

File descriptor returned by open

Address of a data structure in the user process

Num. of bytes the user wants to read

n = write(fd, buffer, count);

Asks for writing count bytes (characters) to the device pointed by fd
If there is space on device for count bytes, it writes count (the kernel allocates a new block if the file does
not contains a block that corresponds to the byte offset to be written)

If there is less, it writes what fits

If there is no space left on device, it’s up to the device behaviour:

Blocking process until space available

Returns 0 immediately

Returns n, the number of bytes actually written
The kernel updates the offset in the file table to the n; consequently, successive
writes of a file update the file data in sequence (when the write is complete, the kernel updates the file size entry in the inode if
the file has grown larger)

Write

Num. of bytes actually written

File descriptor returned by open

Address of a data structure in the user process

Num. of bytes the user wants to read

Example: writing to a device

...

print(...)

...

...

write(1,...)

...

...

pushl $1

int 0x80

...

Python library

C library

System
library

user Operating System

syscall

0
1
2

User

file descriptor
table

Code and

data structures
logical level

device driver:
write_dev()

Device programming
returns result

I/O
 su

ssystem

newfd = dup(fd);

Where fd is the file descriptor being duped and newfd is the new file descriptor that references the file.

Copies a file descriptor into the first free slot of the user file descriptor table.

Returns newfd

newfd = dup2(fd, newfd);

Similar to dup, but the free slot is forced to be newfd

If newfd already refers to an open file, it is closed before duped

close(fd);

Where fd is the file descriptor for the open file.

The kernel does the close operation by manipulating the file descriptor and the corresponding file table and inode table.

If the reference count of the file table entry is greater than 1 (dup, fork) then the kernel decrements the count and the
close completes.

If the table reference count is 1, the kernels frees the entry and releases the in-core inode (If other processes still reference the
inode, the kernel decrements the inode reference count but leaves it allocated).

Dup/dup2/close

Pipes allow transfer of data between processes in a first-in-first-out manner and they allow
also synchronization of process execution.

pipe(fd_vector); // Device for FIFO communications

Creates an unnamed pipe. Returns 2 file descriptors fd_vector[0] for reading,
fd_vector[1] for writing the pipe (and allocates corresponding File Table entries).

There is no name in the VFS, so there is no any call to open.

Only related processes, descendants of a processes that issued the pipe call can
share access to unnamed pipes

Named pipes are identical, except for the way that a process initially accesses them

mknod("my_pipe", S_IFIFO | 0600, 0);

Creates a pipe, named “my_pipe”, in the VFS and, hence, processes that are not
closely related can communicate.

Processes use the open syscall for named pipes in the same way that they open
regular files.

The kernel allocates 2 entries in the File Table and 1 in the Inode Table.

pipe

Usage

Processes use the open system call for named pipes, but the pipe system call to create unnamed pipes.

Afterwards processes use regular system calls for files, such as read and write, and close when manipulating pipes.

Pipes are bidirectional, but ideally each process uses it in just one direction. In this case the kernel manages synchronization of
process execution.

Blocking device:

Opening: a process that opens the named pipe for reading will sleep until another process opens the named pipe for writing,
and vice versa.

Reading: if the pipe is empty, the process will typically sleep until another process writes data into the pipe.

If the count of writer processes drops to 0 and there are processes asleep waiting to read from the pipe, the kernel awakens
them, and they return from their read calls without reading any data.

Writing: if a process writes a pipe and the pipe cannot hold all the data, the kernel marks the inode and goes to sleep
waiting for data to drain from the pipe.

If there are no processes reading from the pipe, the processes that writes the pipe receives a signal SIGPIPE → the
kernel awakens the sleeping processes

Processes should close all non-used files descriptors, otherwise -> Blocking!

Data structures

2 entries in the user File Descriptor Table (R/W)

2 entries in the File Table (R/W)

1 entry in the in-core Inode Table

pipe

lseek changes the File Table byte offset (the read-write pointer) . It
allows direct access by position in data files (or even sequential devices,
like tapes).

Offset is 0 after an open system call (except with APPEND flag).

Offset is increased by read and write system calls.

Offset can be modified by the user with lseek system call

new = lseek(fildes, offset, origin)

The value of the pointer depends on origin:
SEEK_SET: pointer = offset.Set the pointer to offset bytes from the beginning of the file.

SEEK_CUR: pointer += offset. Increment the current value of the pointer by offset.

SEEK_END: pointer = file_size + offset. Set the pointer to the size of the file plus offset bytes.

offset can be negative.

lseek

examples

Reading from the standard input and writing to the standard output

Note:

Reading while there are data (n==0), that’s up to the device. The total amount of syscall depends on the number of
bytes to be read

Processes conventionally have access to three files: its standard input (0), its standard output (1) and its standard
error(2).

Processes executing at a terminal typically use the terminal for these three files.

But each may be "redirected" independently to any logical device that accepts the operations of reading and/or
writing.

For instance:

Byte-by-Byte access

while ((n = read(0, &c, 1)) > 0)

write(1, &c, 1);

#example1 → input=terminal, output=terminal

#example1 <disp1 → input=disp1, output=terminal

#example1 <disp1 >disp2 → input=disp1, output=disp2

The same, but reading blocks if bytes (chars in this case)

Note:

You must write n bytes

Process is asking for SIZE bytes, however it reads n bytes

What about performance? How many system calls are executed?

Buffer in user space access

char buf[SIZE];

...

while ((n = read(0, buf, SIZE)) > 0)

write(1, buf, n);

Data communication using pipes
Program a process schema
equivalent to the figure:

2 pipes

P1 sends to pipe1 and
receives from pipe2

P2 the opposite symmetrically

P2P1

1. int pipe1[2], pipe2[2],pidp1,pidp2;

2. pipe(pipe1);

3. pipe(pipe2);

4. pidp1=fork();

5. if (pidp1==0){

6. close(pipe1[0]);

7. close(pipe2[1]);

8. p1(pipe2[0],pipe1[1]);

9. exit(0);

10.}

11.close(pipe1[1]);

12.close(pipe2[0]);

13.pidp2=fork();

14.if (pidp2==0){

15. p2(pipe1[0],pipe2[1]);

16. exit(0);

17.}

18.close(pipe1[0]);close(pipe2[1]);

19.while(waitpid(-1,null,0)>0);

void p1(int fdin,int fdout);

void p2(int fdin,int fdout);

What does this code do?

And this one?

Random access and size evaluation

fd = open(“abc.txt”, O_RDONLY);

while (read(fd, &c, 1) > 0) {

write(1, &c, 1);

lseek(fd, 4, SEEK_CUR);

}

fd = open(“abc.txt”, O_RDONLY);

size = lseek(fd, 0, SEEK_END);

printf(“%d\n”, size);

Be careful The parent process must close fd[1] if it does not want to be blocked!

pipes and blocking
int fd[2];

...

pipe(fd);
pid = fork();

if (pid == 0) { // child

while (read(0, &c, 1) > 0) {

// Reads, process and send data

write(fd[1], &c, 1);

}

}

else { // parent

while (read(fd[0], &c, 1) > 0) {

// Receives, process and send data

write(1, &c, 1);

}

}

...

What does this code do?

Sharing the read-writer pointer

...

fd = open(“fitxer.txt”, O_RDONLY);

pid = fork();

while ((n = read(fd, &car, 1)) > 0)

if (car == ‘A’) numA++;

sprintf(str, “El número d’As és %d\n”, numA);

write(1, str, strlen(str));

...

What does this code do?

Non shared read-write pointer

...

pid = fork();

fd = open(“fitxer.txt”, O_RDONLY);

while ((n = read(fd, &car, 1)) > 0)

if (car == ‘A’) numA++;

sprintf(str, “El número d’As és %d\n”, numA);

write(1, str, strlen(str));

...

What does this code do?

Redirection of standard input and output

...

pid = fork();

if (pid == 0) {

close(0);

fd1 = open(“/dev/disp1”, O_RDONLY);

close(1);

fd2 = open(“/dev/disp2”, O_WRONLY);

execv(“programa”, “programa”, (char *)NULL);

}

...

Redirection and pipes
...

pipe(fd);

pid1 = fork();

if (pid1 != 0) { // parent

pid2 = fork();

if (pid2 != 0) { // parent

close(fd[0]); close(fd[1]);

while (1);

}

else { // child 2

close(0); dup(fd[0]);

close(fd[0]); close(fd[1]);

execlp(“programa2”, “programa2”, NULL);

}

}

else { // child 1

close(1); dup(fd[1]);

close(fd[0]); close(fd[1]);

execlp(“programa1”, “programa1”, NULL);

}

Kernel data structures

Data structure for storing file system metadata with pointers to its data. Each
inode represents an individual file. It stores:

size
type
access permissions
owner and group
file access times
number of links (number of file names pointing to the inode)
pointers to data (multilevel indexation) → see below, at the end of this section

All information about a file, except file names

Stored on disk, but there is an in-core copy for access optimization

Kernel data structures: inode

Each process
User Field Descriptor Table (FDT): per-process open-file table (saved in the task_struct, ie, PCB)

Records to which files the process is accessing
The file is accessed through the file descriptor, which is an index to the FT
Each file descriptor is a virtual device
Each field descriptor points to an entry in the Open File Table (FT)
Fields we’ll assume: num_entry_OFT

Global:
Open File Table (FT):

System-wide open-file management
One entry can be shared among several processes and one process can point to several entries.
One entry of FT points to one entry of the Inode Table (IT)
Fields we’ll assume: num_links, mode , offset, num_it_entry

Inode Table (IT):
Active-inode table. One entry for each opened physical object. Including DD routines.
Memory (in-core) copy of the disk data for optimization purposes,
Fields we’ll assume: num_links, inode_data

Buffer Cache
Memory zone to hold any I-node and data block transfer from/to the disk
If the requested I-node or block is in the cache, the access to the disk is not performed

Kernel data structures

Kernel data structures

...

os.write(1,...)

...

user system

process

User file
descriptor table

file table inode table

virtual logical physical

One per process
(task_struct) System-wide

(shared)

System-wide
(shared)

m
o

d
e

o
ff

se
t

En
t_

itEnt_ft

0 1 x

1

2

0 0

1 0

2 0

3

4

0 3 RW - 0

1

2

3

4

re
fs

re
fs

in
o

d
e

I/O and fork

Child process inherits a copy of the parent process file descriptor table.

All open entries point to the same File Table entries

Parent and child sharing devices opened before fork system call

Next calls to open will be independent

I/O and concurrent execution (1)

user system

open(“f1”,O_RDONLY)

fork()

open(“f1”,O_WRONLY)

process 1 FDT FT IT

-

0
1
2
3
4

0
1
2
3
4

open(“f1”,O_RDONLY)

fork()

open(“f1”,O_WRONLY)

process 2
0

0

0

0

0

0

0

0

1

1

3

2
0
1
2
3
4

6 rw
2 r

1 w

1 w

Inherited! FT entries shared

0

New, numbers depend on

order execution

0 1 x

1 3 Y

2

0
1

1

1

I/O and exec

New process image keeps the same process’ I/O internal
structures

fork+exec allows I/O redirection before process image
change

I/O and concurrent execution (2)

user system

open(“f1”,O_RWDR)

if (fork()==0){

close(0);

open(“f2”,???)

exec(...)

process 1 FDT FT IT

x

0
1
2
3
4

0
1
2
3
4

new code

process 2
0

close(0);

open(“f2”,????)

exec(...)

0

0

0

1

2

0

0

1

0
1
2
3
4

5 rw

2 rw

1 r
0

0 1 x

1 2 Y

2

File system

Physical Storage Devices

49

connector
controller

NAND
Flash Memory

Solid State Drive
(SSD)

Hard Disk
USB Drive

controller
connector NAND

Flash memory

platters

connector controller

Non-volatile memory to save data

Similar vs Different components
Impact on performance and capacity

How are data physically saved?

50

Speed: rpm
Connector Bandiwth: Gbps

Any storage device needs to organize the pool of memory
E.g.: DVD, hard-disk, pen-drive, etc.

Sector: The smallest unit of data that can be read/written
Defined by the hardware

Fixed size (tipically 512 Bytes)

Some parameters
that impact on
performance

How is a storage device organized?

51

Block: A group of sectors (the smallest unit to allocate space)
Defined by the OS (when formatting the device)

But, what is the best block size????
If it is likely to use large files…

Large blocks

If it is likely to use short files…
Short blocks

What is the impact of a bad block size selection???
Too large: fragmentation (waste of space)
Too short: degrade performance too many accesses to the device

Sectors

1 Block = 4 Sectors

Unused
space

Used
space

Virtual File System (VFS)

52

An abstraction layer to manage different types of file system
It provides a single system call interface for any type of file system
VFS for UNIX/Linux. Other Oses use similar approaches

Types of File System
FAT (File Allocation Table)

Removable drives

exFAT (Extended FAT)
Removable drives larger tan 4GB

NTFS (New Technology Transfer)
Windows

I-node based file systems (UNIX/Linux)
Ext3, ext4, Reiser4, XFS, F2FS

Cloud File System
GlusterFS, Ceph, HadoopFS, ElasticFileSystem (Amazon)

https://en.wikipedia.org/wiki/Comparison_of_file_systems

https://en.wikipedia.org/wiki/Comparison_of_file_systems

File Systems

53

Swap space: in UNIX/Linux OS is a special file system that extends
main memory

Windows implements swap space in a single resizable file

FUSE: Filesystem in Userspace
Let’s non-priviledge users implement their own file system without modifying
the kernel (it is executed in user space rather tan kernel space)

E.g.: GDFS (Google Drive), WikipediaFS, propietary File Systems

Different File Systems offer different features that impact on
performance, reliability, resilience, security, etc

Journaling

54

Transaction based File System
Keep track of changes not yet committed to the file system
It records the changes in a “journal” file

It has a dedicated area in the file system

In case of system failure or outage…
The file system can be brought back fast and with lower likelihood of errors

E.g.: After a crash, replay the last updates from the “journal”

Some File Systems that implement Journaling
Ext3, ext4, ReiserFS, XFS, JFS

RAID: Redundant Array of Independent Disks

55

Storage virtualization technology that combines multiple physical
storage drives into a single logical unit

Software driver vs hardware controller

Impact on performance and effective capacity

Several approaches (can be combined)
RAID 0: Stripping → distributed data

RAID 1: Mirroring → replicated data
RAID 1+0 vs RAID 0+1

RAID 5: with distributed parity blocks

Performance Impact: handling blocks

56

Every file system has its own mechanism to handle…
Occupied/free blocks

The blocks of a given file (i.e. how to access the contents of a given file)

Depending on the file system, the implementa
For example:

FAT: has a global table with as many entries as blocks has the drive

Linked-list based file access

I-node based: has a structure called I-node to hold all the information to manage a file

Index based file access (a.k.a. multi-level index). The index is hold by every I-node

I-Node Based File System

57

Some fields of the I-Node:
I-Node ID

Size

Type of file (regular file, directory, named pipe, socket, etc.)

Protection (Read / Write / Execute (RWX) for Owner, Group, Others)

Ownership

Timestamps

Number of Links (# direct relations between a symbolic name and I-Node ID)

Pointers to blocks of data (multi-level index). It use to has 12-13 pointers.

Data

SuperBlock &

Management

Inodes

Partition

BOOT

Directories: Organizing files

59

Directory: Logical structure to organize files
Pathname: Relative (from any folder) vs Absolute (from the root folder)

It is a particular type of file managed by the OS
“/” is the root folder

Every partition has its own root folder (I-node ID 2)

“.” and “..” are mandatory entries in any directory
Even though the directory has no files

Hardlink: A direct relation between name and I-node ID
Name I-node

. 2

.. 2

home 3

App 4

/(2)

home(3)

usr1(5)

F1(6) F2(7)

App(4)

Name I-node

. 5

.. 3

F1 6

F2 7

Directory: / Directory: /home/usr1

Directories: Organizing files

60

Directories are organized as graphs
A given file can be accessed from different directories

Sharing files
Hardlinks

It only needs a new entry in a directory (name→I-node ID)

Softlinks
A new file that comprises a pathname

Similar to shortcuts in Windows

Pros/Cons/restrictions lead to use one or the other

/(2)

home(3)

usr1(5)

F1(6) F2(7)

Appl(4)

HLF2(7) SLF2

(8)

Mount

61

Publishing the contents of a disk partition on the file system
Linux command line:

$ mount -t ext4 /dev/hda1 /home #mounting the home partition

$ unmount /dev/hda1 #unmounting the home partition

/

bin

etc

usr

mnt

home

cdrom

dvd

user

cdrom

user1

user2

user3

/

movie1

movie2

movie3

/

/

bin

etc

usr

mnt

home
cdrom

dvd

user1

user2

user3 movie1

movie2

movie3

Bibliography

 Randal E. Bryant and David R. O’Hallaron,

Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e), Ch. 10.
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991004062589706711

Operating System
Silberschatz, A; Galvin, P. B; Gagne, G. 2019. Chapters (11-15)
https://discovery.upc.edu/permalink/34CSUC_UPC/rdgucl/alma991004148389706711

 Python documentation
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
 https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html

90

https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991004062589706711
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html

	Slide 1: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
	Slide 2: Contents
	Slide 3: Basics Concepts of I/O
	Slide 4: What’s I/O?
	Slide 5: I/O Devices
	Slide 6: Physical Storage Devices
	Slide 7: HW view : Accessing physical devices
	Slide 8: How are data physically saved?
	Slide 9: Basic system calls
	Slide 10: Blocking and non-blocking operations
	Slide 11: I/O system calls
	Slide 12: Open
	Slide 13: Open: data structure
	Slide 14: Read
	Slide 15: Write
	Slide 16: Example: writing to a device
	Slide 17: Dup/dup2/close
	Slide 18: pipe
	Slide 19: pipe
	Slide 20: lseek
	Slide 21: examples
	Slide 22: Byte-by-Byte access
	Slide 23: Buffer in user space access
	Slide 24: Data communication using pipes
	Slide 25: Random access and size evaluation
	Slide 26: pipes and blocking
	Slide 27: Sharing the read-writer pointer
	Slide 28: Non shared read-write pointer
	Slide 29: Redirection of standard input and output
	Slide 30: Redirection and pipes
	Slide 41: Kernel data structures
	Slide 42: Kernel data structures: inode
	Slide 43: Kernel data structures
	Slide 44: Kernel data structures
	Slide 45: I/O and concurrent execution (1)
	Slide 46: I/O and concurrent execution (2)
	Slide 48: File system
	Slide 49: Physical Storage Devices
	Slide 50: How are data physically saved?
	Slide 51: How is a storage device organized?
	Slide 52: Virtual File System (VFS)
	Slide 53: File Systems
	Slide 54: Journaling
	Slide 55: RAID: Redundant Array of Independent Disks
	Slide 56: Performance Impact: handling blocks
	Slide 57: I-Node Based File System
	Slide 59: Directories: Organizing files
	Slide 60: Directories: Organizing files
	Slide 61: Mount
	Slide 90: Bibliography

