UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

Input / Output management

COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Bioinformatics

2025/26 Spring Term

Jordi Fornés

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Departament d’ Arquitectura de Computadors

Contents

» Basic concepts of I/O
» Basic system calls

» Examples

» Kernel data structures
» File systems

Basics Concepts of I/0

What’s I/O7?

» Definition: information transfer between a process and the outside.
»Data Input: from the outside to the process
» Data Output: from the process to the outside

(always from the process point of view)

»|n fact, basically, processes perform computation and/or I/O

»Sometimes, even, I/O is the main task of the process:
for instance, web browsing, shell, word processor

»1/0 management: Device (peripherals) management to offer an usable,
shared, robust and efficient access to resources

/O Devices

0000 al:)

T, Y W 0 o e, - Wcrnsh
e = I - a— e
o & .----=-"T ¢ =TE

Physical Storage Devices

»Non-volatile memory to save data

»Similar vs Different components

»Impact on performance and capacity NAND

| Flash Memory
platters

controller

connector NAND
Flash memory

3 connector
controller

Solid State Drive

USB Drive connector controller (
SSD)
Hard Disk
6

W view : Accessing physical devices

Memory

in ax, 10h|mov ds:[XX], ax
out 12h, ax

int

Control Register

State Register

Data Register /i

Ports Controller Peripheral

How are data physically saved?

» Any storage device needs to organize the pool of memory
» E.g.: DVD, hard-disk, pen-drive, etc.

»Sector: The smallest unit of data that can be read/written Some parameters

» Defined by the hardware that impact on
» Fixed size (tipically 512 Bytes) performance

Speed: rpm
Connector Bandiwth: Gbps

track t «— spindle

- -~y

|
sector s |
|

e

| I g
cylinder ¢ —» I read-write

|

|

|

: head

platter

D om

rotation

Basic system calls

Blocking and non-blocking operations

»Some I/O operations are time consuming

» A process cannot be idle in the CPU
» OS blocks the process (RUN—=>BLOCKED)

»Default behaviour can be modified with the flag O NONBLOCK

https://docs.python.org/3/library/os.html#os.O_NONBLOCK

/O system calls P

0S.0pen: Given a pathname, flags and mode returns an integer called the user file descriptor
0S.read: Reads n bytes from a device (identified by the file descriptor) and saved in memory

OS.Write: Reads a bytestring from memory and writes them to the device (identified by the file
descriptor)

0S.close: Releases the file descriptor and and leaves it free to be reused

os.du p/d UpZZ Duplicates the file descriptor. Copies a file descriptor into the first free slot of the

user file table. It increments the count of the corresponding file table entry, which now has one more fd
entry that points to it.

os.pipe: Allows transfer of data between processes in a first-in-first-out manner

os.lseek: Changes the offset of a data file (an entry in the File Table pointed by the fd).

Open d

»So, how do you associate a name with a virtual device?
»fd = open(pathname, flags [, mode]) ;
» open syscall links a device (file name) to a virtual device (field descriptor)

> s the first step that a process must take to access file data. It checks
permissions. After correct completion, process can call read/write multiple
times without check permissions again.

» open returns a file descriptor. Other file operations, such as reading, writing,
seeking and closing the file use the file descriptor.

» pathname is a file name.
» flags indicate the type of open. At least, one of them
» O RDONLY (reading)
» O WRONLY (writing)
» O RDWR (reading & writing)
»mode gives the file permissions if the file is being created.

Open: data structure

» Open (cont): effects on the kernel data structures

» The kernel allocates an entry in the file descriptor table. It will always be the first free entry.
The kernel records the index of the File Table in this entry

» The kernel allocates an entry in the file table for the open file. It contains a pointer to the in-
core inode of the open file, and a field that indicates the byte offset in the file where the kernel
expects the next read or write to begin.

» The kernel associates these structures in the corresponding DD (MAJOR of the symbolic name).
It may happen that different entries of the FT point to the same DD

user system
_) Inode of
process User file File table Inode table console
descriptor table

0 0 0 | 2 |Rw|- 0 0 1 Inode of
1 0 1 LI W] 1 another dev.
open (“name”, 0 RDONLY) 2 1 /2,7 1 R |0 2 1 1
3 2 7] 3 / Inode of file
2 1 \\namell
Per-process Per-system Per-system

(shared) (shared)

" | Num. of bytes actually read

Read

File descriptor returned by open

Address of a data structure in the user process

Num. of bytes the user wants to read

»n = read(fd, buffer, count); /_
» Asks for reading count bytes (characters) from the device pointed by fd
» |f there is great or equal count bytes available, it reads count bytes
» |f there is less than count bytes, it reads all of them
» If there is no bytes, it’s up to the device behaviour:
» Blocking process until data available

» Returns 0 immediately
» |f EOF, returns O immediately
» The meaning of EOF it’s up to the device behaviour
» Returns n, the number of bytes actually read

» The kernel updates the offset in the file table to the n; consequently, successive reads of a file
deliver the file data in sequence

Num. of bytes actually written

W r I t e File descriptor returned by open d

Address of a data structure in the user process

Num. of bytes the user wants to read

»Pn = write(fd, buffer, count);
» Asks for writing count bytes (characters) to the device pointed by fd
» If there is space on device for count bytes, it Writes COUNt e remelalocates anew biock it the file does

not contains a block that corresponds to the byte offset to be written)

» |f there is less, it writes what fits
» If there is no space left on device, it’s up to the device behaviour:
» Blocking process until space available
» Returns O immediately
» Returns n, the number of bytes actually written

> The kernel updates the offset in the file table to the n; consequently, successive
ertes Of a fl e update the flle data |n Seq Uence (when the write is complete, the kernel updates the file size entry in the inode if

the file has grown larger)

Example: writing to a device

Python library

C library

System
library

user

print(...)

write (1, ...

pushl $1
int 0x80 <«

Operating System

syscall

A

User \

file descriptor

table

Code and

data structures

logical level

device driver:

_ write_dev () /
|

returns result

Device programming

waisAssns Q/|

Dup/dup?2/close A

» Where fd is the file descriptor being duped and newfd is the new file descriptor that references the file.

» Copies a file descriptor into the first free slot of the user file descriptor table.

» Returns newfd

» newfd = _dup2(fd, newtfd); é
» Similar to dup, but the free slot is forced to be newfd '
» If newfd already refers to an open file, it is closed before duped

» close (fd);
» Where fd is the file descriptor for the open file.

» The kernel does the close operation by manipulating the file descriptor and the corresponding file table and inode table.

» If the reference count of the file table entry is greater than 1 (dup, fork) then the kernel decrements the count and the
close completes.

» If the table reference countis 1, the kernels frees the entry and releases the in-core inode (If other processes still reference the
inode, the kernel decrements the inode reference count but leaves it allocated).

PIpe
» Pipes allow transfer of data between processes in a first-in-first-out manner and they allow

also synchronization of process execution. &
> pipe (fd_Ve Ctor) ; / / Device for FIFO communications

» Creates an unnamed pipe. Returns 2 file descriptors fd vector [0] forreading,
fd_VeCtOI [:I_] fOF ertlng the plpe (and allocates corresponding FiIeTab?z entries).

» There is no name in the VFS, so there is no any call to open.

» Only related processes, descendants of a processes that issued the pipe call can
share access to unnamed pipes

» Named pipes are identical, except for the way that a process initially accesses them
» mknod-("my—prpe"; S IFIFO—+—060070)7 é
= Creates a pipe, namea “my_pipe”, inthe VIS and, nence, processes that are not

closely related can communicate.

» Processes use the open syscall for named pipes in the same way that they open
regular files.

» The kernel allocates 2 entries in the File Table and 1 in the Inode Table.

» Usage
» Processes use the open system call for named pipes, but the pipe system call to create unnamed pipes.

» Afterwards processes use regular system calls for files, such as read and write, and cl1ose when manipulating pipes.

» Pipes are bidirectional, but ideally each process uses it in just one direction. In this case the kernel manages synchronization of
process execution.

» Blocking device:

> Opgning: a process that opens the named pipe for reading will sleep until another process opens the named pipe for writing,
and vice versa.

» Reading: if the pipe is empty, the process will typically sleep until another process writes data into the pipe.

» If the count of writer processes drops to 0 and there are processes asleep waiting to read from the pipe, the kernel awakens
them, and they return from their read calls without reading any data.

» Writing: if a process writes a pipe and the pipe cannot hold all the data, the kernel marks the inode and goes to sleep
waiting for data to drain from the pipe.

» If there are no processes reading from the pipe, the processes that writes the pipe receives a signal SIGPIPE =2 the
kernel awakens the sleeping processes

» Processes should close all non-used files descriptors, otherwise -> Blocking!
» Data structures
» 2 entries in the user File Descriptor Table (R/W)
» 2 entries in the File Table (R/W)
» 1entryinthein-core Inode Table

|seek d

» 1 seek changes the File Table byte offset (the read-write pointer) . It
allows direct access by position in data files (or even sequential devices,
like tapes).

»Offset is 0 after an open system call (except with APPEND flag).
»Offset is increased by read and write system calls.
»Offset can be modified by the user with Iseek system call

Pnew = lseek(fildes, offset, origin)

»The value of the pointer depends on origin:

» SEEK SET: pointer = offset.Set the pointer to offset bytes from the beginning of the file.
» SEEK CUR: pointer += offset. Increment the current value of the pointer by offset.
» SEEK END: pointer =file_size + offset. Setthe pointer tothe size of the file plus offset bytes.

» offset canbe negative.

examples

Byte-by-Byte access d

» Reading from the standard input and writing to the standard output

while ((n = read(0, &c, 1)) > 0)
write(l, &c, 1);

» Note:

» Reading while there are data (n==0), that’s up to the device. The total amount of syscall depends on the number of
bytes to be read

» Processes conventionally have access to three files: its standard input (0), its standard output (1) and its standard
error(2).

P Processes executing at a terminal typically use the terminal for these three files.

» But each may be "redirected" independently to any logical device that accepts the operations of reading and/or
writing.

» Forinstance:

#example1 - input=terminal, output=terminal

#example1 <disp1 - input=disp1, output=terminal
#example1 <disp1 >disp2 - input=disp1, output=disp2

Buffer in user space access é

»The same, but reading blocks if bytes (chars in this case)

char buf[SIZE];

while ((n = read(0, buf, SIZE)) > 0)
write(l, buf, n);

»Note:
» You must write n bytes
» Process is asking for ST ZE bytes, however it reads n bytes
» What about performance? How many system calls are executed?

Data communication using pipes >

» Program a process.schema

close(pipe2[1]);
pl(pipe2 [0],pipel[1]);
exit (0);

equivalent to the figure: 1. int pipel([2], pipe2[2],pidpl,pidp2;
2. pipe(pipel);
3. pipe(pipe2);
—> — 4. pidpl=fork();
P1 P2 5. 1if (pidpl==0) {
b P P 0. close(pipel[0]);
) 7.
8.

» P1sendsto pipel and

receives from pipe2 . }
» P2 the opposite symmetrically . close (pipel[1l]);

.close (pipe2[01]);

. pidp2=fork();

.1f (pidp2==0) {
p2 (pipel [0],pipe2[1]);
exit (0) ;

-}
.close(pipel [0]);close(pipe2[1l]);
.while(waitpid(-1,null,0)>0);

void pl (int fdin, int fdout);

void p2(int fdin, int fdout);

Random access and size evaluation

»\What does this code do?

fd = open(Yabc.txt”, O RDONLY) ;
while (read(fd, &c, 1) > 0) {
write(l, &c, 1);
lseek (fd, 4, SEEK CUR);

»And this one?

fd = open(Yabc.txt”, O RDONLY) ;
size = lseek(fd, 0, SEEK END);
printf (“%d\n”, size);

pipes and blocking

pipe (£d) ;
pid = fork();
if (pid == 0) { // child
while (read (0, &c, 1) > 0) {
// Reads, process and send data
write (£Ed[1], &c, 1);
}

}
else { // parent

while (read (£d4[0], &c, 1) > 0) {
// Receives, process and send data
write(l, &c, 1);

»Be careful The parent process must close £d [1] if it does not want to be blocked!

Sharing the read-writer pointer
»\What does this code do?

fd = open(“fitxer.txt”, O RDONLY) ;

pid = fork();
while ((n = read(fd, &car, 1)) > 0)
if (car == ‘A’) numA++;

sprintf(str, “El nUGmero d’As és %d\n”, numld);
write(l, str, strlen(str));

Non shared read-write pointer

»\What does this code do?

pid = fork();
fd = open(“fitxer.txt”, O RDONLY) ;
while ((n = read(fd, &car, 1)) > 0)
if (car == ‘A’) numA++;
sprintf(str, “El nUGmero d’As és %d\n”, numld);
write(l, str, strlen(str));

Redirection of standard input and output&@

»\What does this code do?

pid = fork():;

if (pid == 0) {
close (0) ;
fdl = open(“/dev/displ”, O RDONLY) ;
close (1) ;

fd2 = open(“/dev/disp2”, O WRONLY) ;
execv (Yprograma”, “programa”, (char *)NULL);

Redirection and pipes

pipe (£d);

pidl = fork();
if (pidl !'= 0) { // parent
pid2 = fork();
if (pid2 !'= 0) { // parent
close (£fd[0]); close(fd[1l]);
while (1) ;
}
else { // child 2

close(0); dup(£fd[0]);
close (£d[0]); close (£fd[1]);
execlp (“programa2”, “programaZ’”, NULL);

else { // child 1
close(l); dup(fd[1l]):
close (fd[0]); close(fd[1l]);
execlp (“programal”, “programal”, NULL);

Kernel data structures

Kernel data structures: inode é

»Data structure for storing file system metadata with pointers to its data. Each

inode represents an individual file. It stores:
> size
> type
P access permissions
» owner and group
» file access times
» number of links (number of file names pointing to the inode)
» pointers to data (multilevel indexation) = see below, at the end of this section

»All information about a file, except file names
»Stored on disk, but there is an in-core copy for access optimization

A

Kernel data structures

» Each process

» User Field Descriptor Table (FDT): per-process open-file table (saved in the task_struct, ie, PCB)
» Records to which files the process is accessing
» The file is accessed through the file descriptor, which is an index to the FT
» Each file descriptor is a virtual device
» Each field descriptor points to an entry in the Open File Table (FT)
» Fields we’ll assume: num entry OFT

» Global:
» Open File Table (FT):

» System-wide open-file management
» One entry can be shared among several processes and one process can point to several entries.
» One entry of FT points to one entry of the Inode Table (IT)
» Fields we’ll assume: num links, mode , offset, num it entry
» Inode Table (IT):
» Active-inode table. One entry for each opened physical object. Including DD routines.
» Memory (in-core) copy of the disk data for optimization purposes,
» Fields we’ll assume: num 1inks, inode data

» Buffer Cache

» Memory zone to hold any I-node and data block transfer from/to the disk
» If the requested I-node or block is in the cache, the access to the disk is not performed

Kernel data structures

user : system
file table ,
| User file € inode table
I descriptor table
I
I
I Ent_ft " % § 't'|
o o0 ® g 5 5
process I = c » 3
! ® £
/1 0 ° ’ e ’
i X 1 X
os.write (1,)12 0 !
3 2 !
4 3 2

System-wide

One per process (shared)

(task struct) System-wide
(shared)

/O and concurrent execution (1)

» /0 and fork
» Child process inherits a copy of the parent process file descriptor table.
» All open entries point to the same File Table entries
» Parent and child sharing devices opened before fork system call
» Next calls to open will be independent

New, numbers depend on

user | system order execution
|
process 1 | FDT FT IT
|
ol o
open (“£1”,0_RDONLY)N | 1™
fork () \\g 0
“f1”,0 WRONLY)L_|
open (—)\ ! 0|6 rw 0 0 1 X
| 2 1127 o 1
. 2 |21fw 0 11 1. 3 Y
process 2 : 3 (2w o 1
1 0 0 4 2
open (“£1”,0 RDONLY) 1 0
fork () W
open (“f1”,0 WRONLYJ I 3 1
| 3 Inherited! FT entries shared

/O and concurrent execution (2)

»|/0 and exec
» New process image keeps the same process’ /0 internal

structures
» fork+exec allows 1/O redirection before process image
change
user | system
I
process 1 | FDT FT IT
"o o
open (“f1”,0 RWDR) : 1
if (fork()==0) { \\g -
close (0); 1
open (“£27,222| ! [} 045 [rwx 0 1 x
exec (...) I rw 0
| 10r |0 1 2 Y
process 2 : 1 3
‘ 4 1 0 2 4 2
close (0)4 = -
open (Wg2 "7, 22?27) 1
exoc N 3| new code :§ Z '
A ._____,,—”‘___ !
a I

File system

Physical Storage Devices

»Non-volatile memory to save data

»Similar vs Different components

»Impact on performance and capacity NAND

| Flash Memory
platters

controller

connector NAND
Flash memory

3 connector
controller

Solid State Drive

USB Drive connector controller (
SSD)
Hard Disk
49

How are data physically saved?

» Any storage device needs to organize the pool of memory
» E.g.: DVD, hard-disk, pen-drive, etc.

»Sector: The smallest unit of data that can be read/written
» Defined by the hardware
» Fixed size (tipically 512 Bytes)

track t «— spindle

- -~y

|
sector s |
|

e

| I g
cylinder ¢ —» I read-write

|

|

|

: head

platter

Do

rotation

Some parameters
that impact on

performance

Speed: rpm
Connector Bandiwth: Gbps

50

How is a storage device organized?

»Block: A group of sectors (the smallest unit to allocate space)
»Defined by the OS (when formatting the device)

. . Used Unused
»But, what is the best block size???? space space »

»|f it is likely to use large files...

» Large blocks

»|f it is likely to use short files... .

» Short blocks

1 Block = 4 Sectors

Sectors

»\What is the impact of a bad block size selection???
»Too large: fragmentation (waste of space)
»Too short: degrade performance too many accesses to the device

51

Virtual File System (VFS)

» An abstraction layer to manage different types of file system

» It provides a single system call interface for any type of file system
» VFS for UNIX/Linux. Other Oses use similar approaches

User

» Types of File System Ussr-space
» FAT (File Allocation Table)

» Removable drives System.call interface (SCI) |
» exFAT (Extended FAT)
» Removable drives larger tan 4GB
» NTFS (New Technology Transfer) kemel | | FSo || Fsy || Fsz | | Fss FSn
» Windows
» |-node based file systems (UNIX/Linux)
» Ext3, ext4, Reiser4, XFS, F2FS Device drivers
» Cloud File System

» GlusterFS, Ceph, HadoopFS, ElasticFileSystem (Amazon) || '| %
| [==] 52

https://en.wikipedia.org/wiki/Comparison of file systems g coROM e USB stk

GLIBC |

Virtual filesystem switch (VFS)

Block layer

https://en.wikipedia.org/wiki/Comparison_of_file_systems

File Systems

»Swap space: in UNIX/Linux OS is a special file system that extends
main memory
»Windows implements swap space in a single resizable file

»FUSE: Filesystem in Userspace

» Let’s non-priviledge users implement their own file system without modifying
the kernel (it is executed in user space rather tan kernel space)

» E.g.: GDFS (Google Drive), WikipediaFS, propietary File Systems

»Different File Systems offer different features that impact on
performance, reliability, resilience, security, etc

Journaling

»Transaction based File System
» Keep track of changes not yet committed to the file system

» It records the changes in a “journal” file
» It has a dedicated area in the file system

»In case of system failure or outage...

»The file system can be brought back fast and with lower likelihood of errors
» E.g.: After a crash, replay the last updates from the “journal”

»Some File Systems that implement Journaling
»Ext3, ext4, ReiserFS, XFS, JFS

RAID: Redundant Array of Independent Disks

»Storage virtualization technology that combines multiple physical
storage drives into a single logical unit
» Software driver vs hardware controller RAID 140 RAID 041

RAID O RalbD 1

» Impact on performance and effective capacity | | |

»Several approaches (can be combined) Gl G [o] (=
»RAID O: Stripping = distributed data hr| [Tae| [hr| e

»RAID 1: Mirroring = replicated data

> RAlD 1+0 VS RA'D O+1 Disk 0 Disk 1 Disk 2 Disk =
»RAID 5: with distributed parity blocks [RAIDS | |
Al A2 A3 Ap
B1 B2 Bp B4
e (oW aF | aw

Dp D2 D3 D4 >°

Performance Impact: handling blocks

»Every file system has its own mechanism to handle...
» Occupied/free blocks
»The blocks of a given file (i.e. how to access the contents of a given file)

»Depending on the file system, the implementa

»For example:
» FAT: has a global table with as many entries as blocks has the drive
» Linked-list based file access
» |-node based: has a structure called I-node to hold all the information to manage a file
» Index based file access (a.k.a. multi-level index). The index is hold by every I-node

56

I-Node Based File System

»Some fields of the I-Node:
»[-Node ID
» Size
» Type of file (regular file, directory, named pipe, socket, etc.)
» Protection (Read / Write / Execute (RWX) for Owner, Group, Others)
» Ownership
» Timestamps
» Number of Links (# direct relations between a symbolic name and I-Node ID)
» Pointers to blocks of data (multi-level index). It use to has 12-13 pointers.

SuperBlock &
Management

BOOT

Inodes Data

Partition

57

Directories: Organizing files

» Directory: Logical structure to organize files
» Pathname: Relative (from any folder) vs Absolute (from the root folder)

» It is a particular type of file managed by the OS

» “/” is the root folder
» Every partition has its own root folder (I-node ID 2)

»“”and “..” are mandatory entries in any directory /(2)
» Even though the directory has no files
o . . h
»Hardlink: A direct relation between name and I-node ID °lme(3)J l Arpld) ‘
5 . c usrl(5)
2 .. 3
home 3 F1 6
App 4 F2 7

Directory: / Directory: /home/usrl

59

Directories: Organizing files

»Directories are organized as graphs
» A given file can be accessed from different directories

»Sharing files
»Hardlinks 2)

» It only needs a new entry in a directory (hame—2>1-node ID)
> Softlinks l rome(3)
» A new file that comprises a pathname
» Similar to shortcuts in Windows
» Pros/Cons/restrictions lead to use one or the other

‘

,

.....
@ .

Mount

» Publishing the contents of a disk partition on the file system
» Linux command line:

$ mount -t ext4 /dev/hdal /home #mounting the home partition
$ unmount /dev/hdal

funmounting the home partition

.......... user
bin / <E user2” .
etc ’

user1
user2
user3
/ user3 _,movie1
home —>user movie1 rm<£movie2
mnt cdrom / émoweZ movie3
usr dvd movie3 USP e

61

Bibliography

» Randal E. Bryant and David R. O’Hallaron,

» Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e), Ch. 10.
» https://discovery.upc.edu/permalink/34CSUC UPC/1g393em/alma991004062589706711

» Operating System
» Silberschatz, A; Galvin, P. B; Gagne, G. 2019. Chapters (11-15)
» https://discovery.upc.edu/permalink/34CSUC_UPC/rdgucl/alma991004148389706711

» Python documentation
» https://docs.python.org/3/library/os.html
» https://docs.python.org/3/library/sys.html
» https://docs.python.org/3/library/signal.html
» https://docs.python.org/3/tutorial/errors.html

90

https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991004062589706711
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html

	Slide 1: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
	Slide 2: Contents
	Slide 3: Basics Concepts of I/O
	Slide 4: What’s I/O?
	Slide 5: I/O Devices
	Slide 6: Physical Storage Devices
	Slide 7: HW view : Accessing physical devices
	Slide 8: How are data physically saved?
	Slide 9: Basic system calls
	Slide 10: Blocking and non-blocking operations
	Slide 11: I/O system calls
	Slide 12: Open
	Slide 13: Open: data structure
	Slide 14: Read
	Slide 15: Write
	Slide 16: Example: writing to a device
	Slide 17: Dup/dup2/close
	Slide 18: pipe
	Slide 19: pipe
	Slide 20: lseek
	Slide 21: examples
	Slide 22: Byte-by-Byte access
	Slide 23: Buffer in user space access
	Slide 24: Data communication using pipes
	Slide 25: Random access and size evaluation
	Slide 26: pipes and blocking
	Slide 27: Sharing the read-writer pointer
	Slide 28: Non shared read-write pointer
	Slide 29: Redirection of standard input and output
	Slide 30: Redirection and pipes
	Slide 41: Kernel data structures
	Slide 42: Kernel data structures: inode
	Slide 43: Kernel data structures
	Slide 44: Kernel data structures
	Slide 45: I/O and concurrent execution (1)
	Slide 46: I/O and concurrent execution (2)
	Slide 48: File system
	Slide 49: Physical Storage Devices
	Slide 50: How are data physically saved?
	Slide 51: How is a storage device organized?
	Slide 52: Virtual File System (VFS)
	Slide 53: File Systems
	Slide 54: Journaling
	Slide 55: RAID: Redundant Array of Independent Disks
	Slide 56: Performance Impact: handling blocks
	Slide 57: I-Node Based File System
	Slide 59: Directories: Organizing files
	Slide 60: Directories: Organizing files
	Slide 61: Mount
	Slide 90: Bibliography

