UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

Process Management

COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Bioinformatics

2025/26 Spring Term

Jordi Fornés

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Departament d’ Arquitectura de Computadors

Program vs Process

»A process is the OS representation of a program during its execution

.

I/O

Syst Il e
ystem/ca Binary file on diSkI

l "Operating Systemﬁ
(T=n=F B

Weord)] ¢ || ©

Reord] ¢)| 3 LR RAMINodeO
==
(cordl : N

WeerdW & || L

&ll:orzul _— ;] g o g RAM Node 1
[eordli [&] /) ||

Program vs Process

» A process is the OS representation of a program during its execution

»The user program is static: it is just a sequence of bytes stored on a
“disk”
»The user process is dynamic, and it consists of...
»\What regions of physical memory is using
»\What files is accessing
»Which user is executing it (owner, group)

»\What time it was started

»How much CPU time it has consumed
> ...

Processes

»Assuming a general purpose system, multi-user
»each time a user starts a program, a new (unique) process is created

»The kernel assigns resources to it: physical memory, some slot of CPU time and
allows file accesses

»In a general purpose system, we have a multiprogrammed environment
» Multiprogrammed System: a system with multiple programs running at a time

» Process creation

»The kernel reserves and initializes a new process data structure with dynamic
information (the number of total processes is limited)

» Each OS uses a name for that data structure, in general, we will refer to it as
PCB (Process Control Block)

» Each new process has a unique identifier (in Linux it is a number). It is called
PID (Process Identifier)

Process Control Block (PCB)

»The PCB holds the information the system needs to manage a process

»The information stored on the PCB depends on the operating system and
on the hardware
» Address space
» Description of the memory regions of the process: code, data, stack,...

» Execution context
» SW: PID, scheduling information, information about devices, accounting,...
» HW: page table, program counter, ...

Process Control Block (PCB)

» Typical attributes are:
»The process identifier (PID) and the parent process identifier (PPID)
»Credentials: user and group
»Environment variables, input arguments
»CPU context (to save cpu registers when entering the kernel)
»Process state: running, ready to run, blocked, stopped...
»Data for I/O management
»Data for memory management
»Scheduling information

»Resource accounting
> ...

»We will deal with some of these attributes in the lab

Multi-Process environment

» Usually there are many processes alive at a given time in a common OS

» Processes usually alternate using the CPU with other resource usage

»In a multi-programmed environment the OS manages how resources are shared
among processes

»In a general purpose system, the kernel alternates processes in the CPU

»\We have to alternate processes without losing the execution state
» We will need a place to save/restore the processes execution state
» We will need a mechanism to change from one process to another

»\We have to alternate processes being as much fair as possible
» We will need a scheduling policy

»If the kernel makes this CPU sharing efficiently, users will have the feeling that
a CPU is constantly assigned to the process

Parallelism vs Concurrency

»Parallelism: N processes run at a given time in N CPUs

Time(each CPU executes one process)

CPUO Proc. 0
CPU1 Proc. 1
CPU2 Proc 2

»Concurrency: N processes could be potentially executed in parallel,
but there are not enough resources to do it

»The OS selects what process can run and what process has to wait

Time (CPU is shared among processes)

Execution Flows (Threads)

» Analyzing the concept of Process...
»the OS representation of a program during its execution

..we can state a Process is the resource allocation entity of a executing program (memory,
|/O devices, threads)

» Among other resources, we can find the execution flow/s (thread/s) of a process

» The execution flow is the basic scheduling entity the OS manages (CPU time allocation)
» Every piece of code that can be independently executed can be bound to a thread
» Threads have the required context to execute instruction flows
» |dentifier (Thread ID: TID)
» Stack Pointer
» Pointer to the next instruction to be executed (Program Counter),
» Registers (Register File)
» Errno variable

» Threads share resources of the same process (PCB, memory, 1/O devices)

Multi-threaded processes

» A process has a single thread when it is launched

» A process can create a number of additional threads

»E.g.: current high-performance videogames comprise >50 threads; Firefox/Chrome
show >80 threads

»The management of multi-threaded processes depends on the OS support
» User Level Threads vs Kernel Level Threads

0

Operatlng System

zzzzc S
L 4 RAM Node 0

[Qeorelll) H
Mheardin] L

Execution Flows (Threads)

»\When and what are threads used for...
» Parallelism exploitation (code and hardware resources)
» Task encapsulation (modular programming)
» |/0 efficiency (specific threads for |/0)
» Service request pipelining (keep required QoS)

»Pros

» Threads management (among threads of the same process) has less cost than process
management

» Threads can exchange data without syscalls, since they share memory

»Cons
» Hard to code and debug due to shared memory

11

Process State

»The PCB holds the information required to exactly know the current
status of the process execution

»Processes do not always use the CPU
»E.g.: Waiting for data coming from a slow device, waiting for an event...

»The OS classifies processes based on what their are doing, this is called
the process state

» It is internally managed like a PCB attribute or grouping processes in different
lists (or queues)

12

Process State Graph

Process
created Selected ZOMBIE
to run /
READY <« —» RUN Execution
, is over
Evicted by
the OS
/O or event Waiting for 1/0
completion BLOCKED or event

» This is a generic process state graph approach mostly used by kernels, but...
»...every kernel defines its own process state graph with slight modifications

13

Kernel Internals for Process Management

»Data structures to keep per-process information and resource
allocation

»Data structures to manage PCB’s, usually based on their state

»In a general purpose system, such as Linux, Data structures are typically
gueues, multi-level queues, lists, hast tables, etc.

»Scheduling algorithms to select the next process to run in the CPU

14

Schedulers

»Schedulers are critical for the proper performance of the system

»Short term: every OS Tick
» What is the next process to run in the CPU

» Medium term: when the OS detects it is running out of resources (E.g. Memory)
» What processes are candidate to temporally release resources to let other processes use them

»Long term (optional): every start/end of a process

» What is the maximum number of processes suitable to runin the system
» It controls the multiprogrammed level of the system

15

Short Term Scheduler

»Every OS tick the scheduler checks whether another process has to run in the CPU

»Non-Preemptive Policies: the scheduler cannot put a process out of the running state
» Only the process itself can decide to release the CPU (e.g. blocking 1/0O call)

»Preemptive Policies: the scheduler can put a process out of the running state in order to
enable another process run instructions in the CPU

» Quantum: period of time the scheduler grants a process to run in a row in the CPU
» Priority/non-priority based policies
» E.g. Round-Robin

»Schedulers of current general purpose OSes are based on complex approaches
» Multiple policies using multiple queues

16

Impact of context switch on performance

» Context Switch: changing the process that is running in the CPU

» |t involves an overhead due to kernel code execution and manage the save/restore of a process
context

Time (CPU is shared among processes)

User Kernel
Mode Mode

Scheduler

Save context PO
selects P1

17

Performance/Efficiency of a Scheduling Policy

»What is the main goal of the system?

» Real-time systems versus High Performance Computing
» It is not the same the device that manage the ABS of a car than a node in a Supercomputer

»The definition of “optimal” scheduling policy depends on the purpose of
the system

» Different metrics to find out whether a scheduling policy is well chosen
» E.g. Response time, throughput, efficiency, turnaround time

18

Syscalls related to Process Management

»Process creation
» A process creates a new child process

»End of process execution
» A process notifies to the kernel that it finishes its execution

»Wait for a child process to finish
» And allow the system to release its data structures (PCB, kernel stack...)

»Get process identifiers
»Get the Process ID (os.getpid()) and the Parent Process ID (os.getppid())

»Execute a new program
»The process changes the program that is executing

19

Process Creation

Process

created ZOMBIE
os.fork() \

READY ré=— =P=(RUN

»The current process creates a child process \ /

Pt is the base of the whole system process hierarchy LOCKED

»The child process is a clone of its parent
» Most of the content is inherited
» Such as memory regions, I/O devices, register file values
» Some characteristics are not inherited
» Such as PID, PPID (Parent’s PID), stats (use of CPU...)

»Both processes keep executing from the very next instruction

» But both receive different return values

»The parent receives the PID of the child process
»The child receives O

20

Example: Fork in Python

import os
count=0 Q
ret = os.fork()

if ret ==0:
count -=1

print("Child with counter = ",count)

else:
count+=1 Q
print("Parent with counter = ",count) ZOMBIE

N

READY)&= =P= RUN

~N /

BLOCKED

Example: Fork in Python

import os

count=0
ret = os.fork() Q |:> Q
if ret ==0:

count -=1

print("Child with counter = ",count)

else:
count +=1 Q\ Q
print("Parent with counter =",count) ZOMBIE
g

READY |r€= =P= RUN

~N /

BLOCKED

Example: Fork in Python

import os
count=0

ret = os.fork()
if ret ==0: Q Q
count -=1

print("Child with counter =",count)

else:
count+=1 Provided it gets Q
: : CPU
print("Parent with counter =",count) \ a T

READY J&= =P=(RUN Execution

BLOCKED

Example: Fork in Python

import os
count=0
ret = os.fork()
if ret ==0:

count -=1
print("Child with counter = ",count) Q . . Output
else: Child with count = -1

count += 1 Q Parent with counter = 1

print("Parent with counter = ",count)

Notes:
- Memory regions are not shared between the processes
- Concurrent/parallel executions are possible

Example: Fork in C

#include <unistd.h> // fork

#finclude <stdio.h> // printf

int main(int argc, char *argv[]) { _ . OUtPUt
int pid, status, code, i; Child with count = -1
Int count =0; Parent with counter = 1

int ret = fork();

if (ret ==10) {
count--; Q

printf("Child with counter = %d\n", count);
}

else {

count +=1;
printf("Parent with counter = %d\n", count);

}

Notes:
- Memory regions are not shared between the processes
- Concurrent/parallel executions are possible

Concurrent vs Sequential Process Creation

» A parent process can create multiple child processes

» Management of concurrent child process creations

»The parent process does not wait to the death of a given child process to create the next
one

»Multiple child processes are alive at a time
» More processes to be handled by the short term scheduler

» Management of sequential child process creations

»The parent process waits to the death of a given child process before creating the next one
»Only one child process is alive at a time
» Only one additional child process to be handled by the short term scheduler

26

End of process execution

sys.exit([argl]) \ ZOMBIE
/V

READY)je=— =P=(RUN Execution

»The process ends the execution \ /

» It turns to Zombie status BLOCKED

» All resources are released (e.g. memory),
» but the PCB (PID and return value) is preserved

» Parameters:
» An integer” value that is the return value of the process execution (it is truncated to 1 Byte)

»The parent process has to release the zombie child process
» Until that time, the PCB still exists and thus its PID

27

Wait for a child process to finish

[pid, status]= os.wait()

»The parent process (caller) releases a zombie child process

» Returns the PID of the released child process and the exit STATUS

» Status is updated to hold the return value of the child process (or event that involved its
finalization) in the high byte of a 16-bit number

» Release the zombie child process means to release the PCB, PID and related structures

»The behavior

»If there are child processes

» If there is a zombie child process that matches with the “pid” parameter, it is released
» Otherwise the parent process (caller) is blocked = this is a blocking system call

»If there are no child processes, returns “-1”

28

Example: exit & wait in Python

import os,sys \ Q ZOMBIE

~

READY)= =P RUN

N/

foriinrange (count, 255):
_ Blocked till
count +=1 Q P2 becomes zombie
sys.exit(count)

else:
count+=1

print("Parent with counter =",count) Q

count=0
ret = os.fork()

if ret==0:
print("Child with counter = ",count)

Example: exit & wait in Python

import o0s,sys \Q

count=0
ret = os.fork()

READY re=— =$=(RUN

print("Child with counter =",count) BLOCKED
foriinrange (count, 255):

count +=1

sys.exit(count) count is 255 (Oxff)
exit (255);
else:

count+=1

print("Parent with counter =",count) Q

ZOMBIE

" O

Example: exit & wait in Python

import os,sys \ : ZOMBIE

count =0 READY € === RUN
ret = os.fork()

print("Child with counter =",count) BLOCKED
foriinrange (count, 255):

count +=1
sys.exit(count)

else:
count+=1
print("Parent with counter =",count)

[pid,status] = os.wait()
Q Status is 65280 (0xff00)

See check status (pid, status)

#include <unistd.h> // fork
#include <stdio.h> // printf
#include <sys/wait.h> // wait
#include <stdlib.h> // exit
int main(int argc, char * argv[]) {
inti, pid, status, code;
int count =0;
int ret = fork();
if (ret ==0) {
printf("Child with counter = %d\n",count);
for (i=count;i<255;i++) {
count ++;

}

exit(count);
}
else {
count+=1;
printf("Parent with counter = %d\n",count);
pid = wait(&status);
if WIFEXITED(status) {
code = WEXITSTATUS(status);

printf("Child %d is dead: %d\n",pid,status);

Example: exit & wait in C

: ZOMBIE

N

READY re=— =$=(RUN
BLOCKED

Q Status is 65280 (0xff00)

Example: exit conventions

»Error codes in exit(...) follow some common conventions

» Code O: program exited successfully
»Code 1

» Minor issues, e.g., grep returns 1 if no matching lines are found in any files
» Errors occurred, e.g., find

»Code 2 and above
» Errors occurred, e.g. grep could not open at least one of the files provided

» Usually, no negative numbers are returned

33

Execute a new program

os.execlp(file, arg0, argl, ...)

os.execvp(file, args)

»Current process replaces the program (file) that is executing
» A whole new memory contents and register values are loaded from “filename”
» |t performs dynamic linking, if necessary, and starts the program from its entry point
» Parameters:
» filename: indicates the name of the program to be loaded and executed (PATH is used to find it)

» argX: hold the command line arguments for the program to be executed
» args[]: same as argX, but in array format.

»Behavior
» If the new program can be found, loaded and started, it never returns
» Once it is replaced, the previous memory contents (e.g. code, data) are not there any more

» On Unix, the new executable is loaded into the current process, and will have the same process id as
the caller. In Python, errors will be reported as OSError exceptions.

» E.g. the “filename” is wrong, the user has no permission to execute the “filename”, etc.

34

https://docs.python.org/3/library/exceptions.html#OSError

Example

» Child process replaces its code
by the “Is” program

»Parent process waits until “Is”
finishes

»Relation between fork and exec

iImport 0s,sys

pid = os.fork()
if pid ==0:

os.execlp("ls","-I", "-a")
else:
os.wait()
orint("Parent about to finish")

Interprocess communication (IPC)

Inter Process Communication (IPC)

» A complex problem can be solved with several processes that cooperates
among them. Cooperation means communication
» Data communication: sending/receiving data
»Synchronization: sending/waiting for events

» There are two main models for data communication

»Shared memory between processes

» Processes share a memory area and access it through variables mapped to this area
» This is done through a system call, by default, memory is not shared between processes

» Message passing (Unit 4)

» Processes uses some special device to send/receive data

»\We can also use regular files, but the kernel doesn’t offer any special support
for this case

IPC In Linux

»Signals — Events send by processes belonging to the same user or by
the kernel

»Pipes, aka FIFOs: special devices designed for process
communication. The kernel offers support for process
synchronization (Unit 4)

»Sockets — Similar to pipes but it uses the network

»Shared memory between processes — Special memory area accessible
for more than one process

Signals: idea

»Signals: notification that an event has occurred

»Signals received by a process can be sent by the kernel or by other
processes of the same user

A send a signal to B
Process A > Process B

kernel Kernel send a signal to B

Type of signals and management (I)

»Each type of event has an associated signal

» Type of events and associated signals are defined by the kernel

» The type of signal is a number, but there exists constants that can be used inside
programs or in the command line

»There are two signals that are not associated to any event, so the programmer
can assign any meaning to them - SIGUSR1 y SIGUSR2

»Each process has associated a management to each signal
» Default managements

» A process can catch (change the associated management) to all type of signal
except SIGKILL and SIGSTOP

Type of signals and management (2)

SIGCHLD
SIGCONT
SIGSTOP
SIGINT

SIGALRM
SIGKILL
SIGSEGV

SIGUSR1

SIGUSR2

IGNORE

CONT

STOP

END

END

END

CORE

END

END

Child stopped or terminated

Continue if stopped

Stop a process

Interrupted from the keyboard (Ctrl-C)
timer programmed by alarm has expired
Finish the process

Invalid memory access

Defined by the process
Defined by the process

Type of signals and management (3)

» Reaction of a process to a signal delivering is similar to the reaction to an
interrupt:
»\When a process receives a signal, it stops the code execution, executes the

management associated to that signal and then (if it survives) continues with the
execution of the code.

»Processes can block/unblock the delivery of each signal except SIGKILL and
SIGSTOP (signals SIGILL, SIGFPE and SIGSEGV cannot be blocked when they are
generated by an exception).

»\When a process blocks a signal, if that signal is sent to the process it will not be
delivered until the process unblocks it.

» The system marks the signal as pending to be delivered
» Each process has bitmap of pending signals: it only can remember one pending delivery for each
type of singal
»\When a process unblocks a signal, it will receive the pending signal and will execute
the associated management

Signals basic interface

» Send a signal
» os.kill (pid, siq)
» Catch a signal
» signal.signal (signalnum, handler)
» Timer setting
» signal.alarm(time)
»Tosendasignal.SIGALRM tothe process self

» Variables defined in the signal module:

» https://docs.python.org/3/library/signal.html
» Checkalsoman 7 signal

https://docs.python.org/3/library/signal.html#module-signal
https://docs.python.org/3/library/signal.html

Interface: send a signal P

» os.kill(pid, s1Qg)
»Send signal sig to the process pid.

» Constants for the specific signals available on the host platform are defined in
the signal module.

import os, signal

os.kill(os.getppid(), signal . SIGUSR1)

https://docs.python.org/3/library/signal.html#module-signal

Interface: catch a signal P

» signal.signal (signalnum, handler)

»Set the handler for signal signalnum to the function handler.

»handler can be a callable Python object taking two arguments (signal number and
current stack frame)

» Or one of the special values signal.SIG IGN or signal.SIG_DFL

import os, signal

def f(i):
print “Caught! Signum: “,i)

signal.signal(signal.SIGUSR1, f)

https://docs.python.org/3/library/signal.html#signal.SIG_IGN
https://docs.python.org/3/library/signal.html#signal.SIG_DFL

Example: signal , kill

#example signal-kill
import signal
def handler(signum, frame):

print ("hil:")

return O
signal.signal(signal.SIGUSR1,handler)
while True:

pass

[1] 15029
hil:

hil:

S python3 signal-kill.py &

S kill -USR1 15029

S kill -USR1 15029

Example: signal , kill

/* example signal-kill */
#include
#include
handler(int signum) {write(1, ,4);}
main(int argc, *argv([]){
signal(SIGUSR1,handler);
(;;);

S cc -o signal-kill example_signal-kill.c
S ./signal-kill
[1] 15029
S kill -USR1 15029
hil:
S kill -USR1 15029
hil:
: S kill -KILL 15029
[1] + killed ./signal-kill

Signals: Sending and delivering

What really happens?: the kernel offers the service to pass the information.

Process A Process B

“A sends asignal to B”-> system call
kill(PID_B,signal)

kernel PCB process B

he Kernel launches the signal management

Signal management

Delivering a SIGCHLD signal

»\When a child process terminates, the kernel sends a SIGCHLD to the
parent

» Default disposition for SIGCHLD is ignore

» A child that terminates, but has not been waited for becomes a "zombie".

» it will consume a slot in the kernel process table, and if this table fills, it will not be
possible to create further processes.

» A parent call toos.wait () will block until all children have terminate

» Now, parent has a way to obtain information about the child without
blocking

Delivering a SIGCHLD signal

5 def (pid, status):

6 if os.WIFEXITED(status):

7 code = 0s. WEXITSTATUS(status)

8 print(, pid, , code)
9 else:

10 signum = 0s. WTERMSIG(status)

11 print(, pid, , signum)
12 return

13

14 def child_handler(signum, frame):

15 [pid, status] = os.wait()

16 check status(pid, status)

17 return

18

19 signal.signal(signal.SIGCHLD, child_handler)

20 pid = os.fork()

Delivering a SIGCHLD signal

#include
#include
#include
#include
#include

}

check_status(int pid, int status) {
code, signum;
WIFEXITED(status) {
code = WEXITSTATUS(status);

printf(
}

{
signum = WTERMSIG(status);
printf(

0;
child_handler(int signum) {
pid, status;

pid = waitpid(-1,&status, WNOHANG);
check_status(pid, status);

main(int argc, *argv(]) {

, pid,code);

,pid, signum);

Relation with fork and exec

» FORK: new process

» Child inherits from parent
» the signal table
» the mask of blocked signals
» Child resets
» The bitmap of pending events
» Timers

»Events and timers are associated to a particular pid (the pid of the parent) and children are new
processes with new pids.

» EXECLP: same process, new image

» Process keeps
» The bitmap of pending events
» The mask of blocked signals
» Timers
P Process resets
» The signal table> the code of the process is different so the handle code of the signals is set to SIG_DFL

Error control

Error control

>t is extremely important to check for errors
»On system calls
»On library calls

»Manual pages describe the way system/library routines return errors

RETURN VALUE -- fork
On success, the PID of the child process is returned in the parent, and
0 is returned in the child. On failure, -1 is returned in the parent,
no child process is created, and errno is set appropriately.

RETURN VALUE -- exit
These functions do not return.

Error control

»System calls usually return -1 on error and
»Set the errno variable to contain the code of the specific error

RETURN VALUE -- wait

wait(): on success, returns the process ID of the terminated child; on error, -1 is returned.

ERRORS
ECHILD The process specified by pid does not exist or is not a
child of the calling process.

EINVAL The options argument was invalid.

55

»Common
UNIX/Linux
error codes

/usr/include/asm-generic/errno-base.h

E rror contro | #ifndef ASM_GENERIC_ERRNO BASE H

#define _ASM_GENERIC_ERRNO_BASE_H

#define EPERM 1
#define ENOENT 2
#define ESRCH 3
#define EINTR 4
#define EIO 5
#define ENXIO 6
#define E2BIG 7
#define ENOEXEC 8

#define EBADF 9
#define ECHILD 10
#define EAGAIN 11
#define ENOMEM 12
#define EACCES 13
#define EFAULT 14
#define ENOTBLK 15
#define EBUSY 16
#define EEXIST 17

#define EHWPOISON

/* Operation not permitted */
/* No such file or directory */
/* No such process */
/* Interrupted system call */

I* 1/O error */

/* No such device or address */
[* Argument list too long */

[* Exec format error */

/* Bad file number */

/* No child processes */

[* Try again */

/* Out of memory */

[* Permission denied */

/* Bad address */

/* Block device required */

/* Device or resource busy */
[* File exists */

133 /* Memory page has hardware error */

Error control P

»Although in Python we could use the negative return value to handle
low level errors, it is much better to use exceptions.

» Errors detected during execution are called exceptions and are not
unconditionally fatal.

» If the exception is not handled by the program, it results in error
messages:

>>> 10 * (1/0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

Handling exceptions P

» Each module defines its own exceptions

» In this unit we have to deal with OSError
» exception OSError(errno, strerror|, filenamel, winerror|, filenameZ2]]])
» This exception is raised when a system function returns a system-related error
» errno, a numeric error code try:

from the C variable errno. # syscall
except OSError:

manage error
else:

» General case:

after syscall works
finally:
anyway

https://docs.python.org/3/library/exceptions.html#OSError

Handling exceptions

» Exemple:

» A parent process creates a child and just after that waits for it
» |s this code ok?

try:
pid = os.fork()
os.wait()

except OSError as err:
print(format(err))

Handling exceptions

» Exemple:

» A parent process creates a child and just after that waits for it
» |s this code ok?

try:
pid = os.fork()
os.wait()
except OSError as err:
print(format(err))

: S python3 error_control.py
OS error: [Errno 10] No child processes

Handling exceptions

» Raising Exceptions
»With the statement raise we can

» force a specified exception to occur
» Caught the exception, but not handle it

» Model-View-Controller pattern
»Who tries?
» The controller

»Who raises the exception?
» The model

»Who prints the error message?
» The view

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Handling exceptions P

»A try statement may have more than one except clause, to specify
handlers for different exceptions.

try:
pid = os.fork()
except OSError as err:
print(format(err))
except:
print (,sys.exc_info()[0])
raise

else:
if pid == 0:
print (, 0s.getpid())
sys.exit(0)

Error control

»Sample code to manage errors

If the pid returned is -1 ...
1 #include <sys/wait.h> perror formats the error message:
2 #include <errno.h> waitpid: No child processes
3 #include <stdlib.h>
4 #include <stdio.h> - If the application cannot continue, issue
5 int main() { the exit(...)
6 int status; . . .
e - If the application can continue, the user

pid_t pid, mychild;
will just get the error message
... mychild = ...

pid = waitpid(mychild, &status, 0);
if (pid < 0) {

perror ("waitpid");

exit(1); //optional?
}

Exercises

Exercises

»Analyse this code

try:
pid = os.fork()
print(“Hello”)

except OSError:
print(“Error”)

»Qutput if fork success?
»Output if fork fails?
»Try it!!

Exercises

»Analyse this code

pid = fork();
printf(“Hello”);

if (pid==-1)
printf(“Error”);

»Qutput if fork success?
»Output if fork fails?
»Try it!!

Exercises

» How many processes are created by this code?

os.fork()
os.fork()

os.fork()

» And by this one?

for _inrange (0,8):
os.fork()

Exercises d

» How many processes are created by this code?

fork();
fork();

fork();

» And by this one?

for (int i=0;i<8;i++)
fork();

Exercises (exam)

» Draw the processes
hierarchy
» with sys.exit (0)
» without sys.exit (0)

import os, sys

def work():
print("My pid is ", os.getpid())
sys.exit(0)

for _inrange (0,3):
pid = os.fork()
if pid ==0:
work()
while True:

Process hierarchy

_ _ Without exit
With exit system call

homeworks

»\Write a Python program that creates this process scheme:

parent

A

PN

»Modify the code to generate this new one :

parent— P1 —~» P2 —» P3 - PN

Bibliography

»Operating system concepts, Global edition. Hoboken: John Wiley & Sons, 2019.

»A. Silberschatz, P. B. Galvin, and G. Gagne
» https://discovery.upc.edu/permalink/34CSUC_UPC/18e7aks/alma991004148389706711
» Introduces the presented concepts about OS
»Tools: Performance Analysis of Parallel Python Applications
https://www.sciencedirect.com/science/article/pii/S1877050917307962

» Python documentation
» https://docs.python.org/3/library/os.html
» https://docs.python.org/3/library/sys.html
» https://docs.python.org/3/library/signal.html
» https://docs.python.org/3/tutorial/errors.html
» C documentation
» The C Programming Language
» Kernighan and Ritchie
» https://discovery.upc.edu/permalink/34CSUC_UPC/19393em/alma991000708719706711

» Linux man pages

79

https://discovery.upc.edu/permalink/34CSUC_UPC/18e7aks/alma991004148389706711
https://www.sciencedirect.com/science/article/pii/S1877050917307962
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991000708719706711

	Slide 1: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
	Slide 2: Program vs Process
	Slide 3: Program vs Process
	Slide 4: Processes
	Slide 5: Process Control Block (PCB)
	Slide 6: Process Control Block (PCB)
	Slide 7: Multi-Process environment
	Slide 8: Parallelism vs Concurrency
	Slide 9: Execution Flows (Threads)
	Slide 10: Multi-threaded processes
	Slide 11: Execution Flows (Threads)
	Slide 12: Process State
	Slide 13: Process State Graph
	Slide 14: Kernel Internals for Process Management
	Slide 15: Schedulers
	Slide 16: Short Term Scheduler
	Slide 17: Impact of context switch on performance
	Slide 18: Performance/Efficiency of a Scheduling Policy
	Slide 19: Syscalls related to Process Management
	Slide 20: Process Creation
	Slide 21: Example: Fork in Python
	Slide 22: Example: Fork in Python
	Slide 23: Example: Fork in Python
	Slide 24: Example: Fork in Python
	Slide 25: Example: Fork in C
	Slide 26: Concurrent vs Sequential Process Creation
	Slide 27: End of process execution
	Slide 28: Wait for a child process to finish
	Slide 29: Example: exit & wait in Python
	Slide 30: Example: exit & wait in Python
	Slide 31: Example: exit & wait in Python
	Slide 32: Example: exit & wait in C
	Slide 33: Example: exit conventions
	Slide 34: Execute a new program
	Slide 35: Example
	Slide 36: Interprocess communication (IPC)
	Slide 37: Inter Process Communication (IPC)
	Slide 38: IPC in Linux
	Slide 39: Signals: idea
	Slide 40: Type of signals and management (I)
	Slide 41: Type of signals and management (2)
	Slide 42: Type of signals and management (3)
	Slide 43: Signals basic interface
	Slide 44: Interface: send a signal
	Slide 45: Interface: catch a signal
	Slide 46: Example: signal , kill
	Slide 47: Example: signal , kill
	Slide 48: Signals: Sending and delivering
	Slide 49: Delivering a SIGCHLD signal
	Slide 50: Delivering a SIGCHLD signal
	Slide 51: Delivering a SIGCHLD signal
	Slide 52: Relation with fork and exec
	Slide 53: Error control
	Slide 54: Error control
	Slide 55: Error control
	Slide 56: Error control
	Slide 57: Error control
	Slide 58: Handling exceptions
	Slide 59: Handling exceptions
	Slide 60: Handling exceptions
	Slide 61: Handling exceptions
	Slide 62: Handling exceptions
	Slide 63: Error control
	Slide 64: Exercises
	Slide 65: Exercises
	Slide 66: Exercises
	Slide 67: Exercises
	Slide 68: Exercises
	Slide 69: Exercises (exam)
	Slide 70: Process hierarchy
	Slide 71: homeworks
	Slide 79: Bibliography

