
COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Process Management

Jordi Fornés

Bioinformatics

2025/26 Spring Term

Program vs Process

A process is the OS representation of a program during its execution

2

I/O

prog.exe

Operating System

System call
Binary file on disk

Core

Core

Core

Core

L
2

L

2

L
2

L

2

L

3
RAM Node 1

Core

Core

Core

Core

L

2

L
2

L

2

L
2

L

3
RAM Node 0

Program vs Process

A process is the OS representation of a program during its execution

The user program is static: it is just a sequence of bytes stored on a
“disk”

The user process is dynamic, and it consists of…
What regions of physical memory is using
What files is accessing
Which user is executing it (owner, group)
What time it was started
How much CPU time it has consumed
…

3

Processes

Assuming a general purpose system, multi-user
each time a user starts a program, a new (unique) process is created
The kernel assigns resources to it: physical memory, some slot of CPU time and
allows file accesses

In a general purpose system, we have a multiprogrammed environment
Multiprogrammed System: a system with multiple programs running at a time

Process creation
The kernel reserves and initializes a new process data structure with dynamic
information (the number of total processes is limited)

Each OS uses a name for that data structure, in general, we will refer to it as
PCB (Process Control Block)
Each new process has a unique identifier (in Linux it is a number). It is called
PID (Process Identifier)

4

Process Control Block (PCB)

The PCB holds the information the system needs to manage a process

The information stored on the PCB depends on the operating system and
on the hardware

Address space
Description of the memory regions of the process: code, data, stack,…

Execution context
SW: PID, scheduling information, information about devices, accounting,…

HW: page table, program counter, …

Process Control Block (PCB)

Typical attributes are:
The process identifier (PID) and the parent process identifier (PPID)
Credentials: user and group
Environment variables, input arguments
CPU context (to save cpu registers when entering the kernel)
Process state: running, ready to run, blocked, stopped…
Data for I/O management
Data for memory management
Scheduling information
Resource accounting
…

We will deal with some of these attributes in the lab

Multi-Process environment

Usually there are many processes alive at a given time in a common OS

Processes usually alternate using the CPU with other resource usage
In a multi-programmed environment the OS manages how resources are shared
among processes

In a general purpose system, the kernel alternates processes in the CPU
We have to alternate processes without losing the execution state

We will need a place to save/restore the processes execution state
We will need a mechanism to change from one process to another

We have to alternate processes being as much fair as possible
We will need a scheduling policy

If the kernel makes this CPU sharing efficiently, users will have the feeling that
a CPU is constantly assigned to the process

7

Parallelism vs Concurrency

Parallelism: N processes run at a given time in N CPUs

Concurrency: N processes could be potentially executed in parallel,
but there are not enough resources to do it

The OS selects what process can run and what process has to wait

CPU0 Proc. 0 Proc. 1 Proc. 2 Proc. 0 Proc. 1 Proc. 2 Proc. 0 Proc. 1 Proc. 2 …

CPU0 Proc. 0

CPU1 Proc. 1

CPU2 Proc 2

Time(each CPU executes one process)

Time (CPU is shared among processes)

Execution Flows (Threads)

Analyzing the concept of Process…
the OS representation of a program during its execution

 …we can state a Process is the resource allocation entity of a executing program (memory,
I/O devices, threads)

Among other resources, we can find the execution flow/s (thread/s) of a process
The execution flow is the basic scheduling entity the OS manages (CPU time allocation)

Every piece of code that can be independently executed can be bound to a thread
Threads have the required context to execute instruction flows

Identifier (Thread ID: TID)
Stack Pointer
Pointer to the next instruction to be executed (Program Counter),
Registers (Register File)
Errno variable

Threads share resources of the same process (PCB, memory, I/O devices)

9

Multi-threaded processes

10

Core

Core

Core

Core

L

2
L

2
L

2

L

2

L

3
RAM Node 1

Core

Core

Core

Core

L

2
L

2
L

2

L

2

L

3
RAM Node 0

Operating System

I/O

A process has a single thread when it is launched

A process can create a number of additional threads
E.g.: current high-performance videogames comprise >50 threads; Firefox/Chrome
show >80 threads

The management of multi-threaded processes depends on the OS support
User Level Threads vs Kernel Level Threads

I/O I/O

Execution Flows (Threads)

When and what are threads used for…
Parallelism exploitation (code and hardware resources)
Task encapsulation (modular programming)
I/O efficiency (specific threads for I/O)
Service request pipelining (keep required QoS)

Pros
Threads management (among threads of the same process) has less cost than process
management
Threads can exchange data without syscalls, since they share memory

Cons
Hard to code and debug due to shared memory

11

Process State

The PCB holds the information required to exactly know the current
status of the process execution

Processes do not always use the CPU
E.g.: Waiting for data coming from a slow device, waiting for an event…

The OS classifies processes based on what their are doing, this is called
the process state

It is internally managed like a PCB attribute or grouping processes in different
lists (or queues)

12

Process State Graph

13

This is a generic process state graph approach mostly used by kernels, but…
…every kernel defines its own process state graph with slight modifications

READY RUN

BLOCKED

ZOMBIE
Process
created Selected

to run

Evicted by
the OS

Execution
is over

I/O or event
completion

Waiting for I/O
or event

Kernel Internals for Process Management

Data structures to keep per-process information and resource
allocation

Data structures to manage PCB’s, usually based on their state
In a general purpose system, such as Linux, Data structures are typically
queues, multi-level queues, lists, hast tables, etc.

Scheduling algorithms to select the next process to run in the CPU

14

Schedulers

Schedulers are critical for the proper performance of the system

Short term: every OS Tick
What is the next process to run in the CPU

Medium term: when the OS detects it is running out of resources (E.g. Memory)
What processes are candidate to temporally release resources to let other processes use them

Long term (optional): every start/end of a process
What is the maximum number of processes suitable to run in the system

It controls the multiprogrammed level of the system

15

Short Term Scheduler

Every OS tick the scheduler checks whether another process has to run in the CPU

Non-Preemptive Policies: the scheduler cannot put a process out of the running state
Only the process itself can decide to release the CPU (e.g. blocking I/O call)

Preemptive Policies: the scheduler can put a process out of the running state in order to
enable another process run instructions in the CPU

Quantum: period of time the scheduler grants a process to run in a row in the CPU
Priority/non-priority based policies

E.g. Round-Robin

Schedulers of current general purpose OSes are based on complex approaches
Multiple policies using multiple queues

16

Impact of context switch on performance

Context Switch: changing the process that is running in the CPU
It involves an overhead due to kernel code execution and manage the save/restore of a process
context

17

CPU0 Proc. 0 Proc. 1 Proc. 2 Proc. 0 Proc. 1 Proc. 2 Proc. 0 Proc. 1 Proc. 2 …

Time (CPU is shared among processes)

Proc. 0 Proc. 1 Proc. 2

Scheduler
selects P1

Restore context P1Save context P0

User
Mode

Kernel
Mode

Performance/Efficiency of a Scheduling Policy

What is the main goal of the system?
Real-time systems versus High Performance Computing

It is not the same the device that manage the ABS of a car than a node in a Supercomputer

The definition of “optimal” scheduling policy depends on the purpose of
the system

Different metrics to find out whether a scheduling policy is well chosen
E.g. Response time, throughput, efficiency, turnaround time

18

Syscalls related to Process Management

Process creation
A process creates a new child process

End of process execution
A process notifies to the kernel that it finishes its execution

Wait for a child process to finish
And allow the system to release its data structures (PCB, kernel stack…)

Get process identifiers
Get the Process ID (os.getpid()) and the Parent Process ID (os.getppid())

Execute a new program
The process changes the program that is executing

19

Process Creation

The current process creates a child process
It is the base of the whole system process hierarchy
The child process is a clone of its parent

Most of the content is inherited
Such as memory regions, I/O devices, register file values

Some characteristics are not inherited
Such as PID, PPID (Parent’s PID), stats (use of CPU…)

Both processes keep executing from the very next instruction
But both receive different return values

The parent receives the PID of the child process
The child receives 0

20

os.fork()

READY RUN

BLOCKED

ZOMBIE
Process

created

Example: Fork in Python

21

P1

READY RUN

BLOCKED

ZOMBIE

import os
count = 0
ret = os.fork()
if ret == 0:
 count -=1
 print("Child with counter = ",count)
else:
 count += 1
 print("Parent with counter = ",count)

P1

Example: Fork in Python

22

P2P1

READY RUN

BLOCKED

ZOMBIEP2
P1

import os
count = 0
ret = os.fork()
if ret == 0:
 count -=1
 print("Child with counter = ",count)
else:
 count += 1
 print("Parent with counter = ",count)

Example: Fork in Python

23

P2P1

READY RUN

BLOCKED

ZOMBIE

Execution

is over

P2 P1Provided it gets
a CPU

import os
count = 0
ret = os.fork()
if ret == 0:
 count -=1
 print("Child with counter = ",count)
else:
 count += 1
 print("Parent with counter = ",count)

import os
count = 0
ret = os.fork()
if ret == 0:
 count -=1
 print("Child with counter = ",count)
else:
 count += 1
 print("Parent with counter = ",count)

Example: Fork in Python

24

P2

P1

Output
Child with count = -1
Parent with counter = 1

Notes:
- Memory regions are not shared between the processes
- Concurrent/parallel executions are possible

#include <unistd.h> // fork
#include <stdio.h> // printf
int main(int argc, char *argv[]) {
 int pid, status, code, i;
 int count = 0;
 int ret = fork();
 if (ret == 0) {
 count--;
 printf("Child with counter = %d\n", count);
 }
 else {
 count += 1;
 printf("Parent with counter = %d\n", count);
 }
}

Example: Fork in C

25

P2

P1

Output
Child with count = -1
Parent with counter = 1

Notes:
- Memory regions are not shared between the processes
- Concurrent/parallel executions are possible

Concurrent vs Sequential Process Creation

A parent process can create multiple child processes

Management of concurrent child process creations
The parent process does not wait to the death of a given child process to create the next
one
Multiple child processes are alive at a time

More processes to be handled by the short term scheduler

Management of sequential child process creations
The parent process waits to the death of a given child process before creating the next one
Only one child process is alive at a time

Only one additional child process to be handled by the short term scheduler

26

End of process execution

The process ends the execution
It turns to Zombie status

All resources are released (e.g. memory),

but the PCB (PID and return value) is preserved

Parameters:
An integer* value that is the return value of the process execution (it is truncated to 1 Byte)

The parent process has to release the zombie child process
Until that time, the PCB still exists and thus its PID

27

sys.exit([arg])

READY RUN

BLOCKED

ZOMBIE

Execution

is over

P2

Wait for a child process to finish

The parent process (caller) releases a zombie child process
Returns the PID of the released child process and the exit STATUS

Status is updated to hold the return value of the child process (or event that involved its
finalization) in the high byte of a 16-bit number
Release the zombie child process means to release the PCB, PID and related structures

The behavior
If there are child processes

If there is a zombie child process that matches with the “pid” parameter, it is released
Otherwise the parent process (caller) is blocked → this is a blocking system call

If there are no child processes, returns “-1”

28

[pid, status] = os.wait()

Example: exit & wait in Python

29

import os,sys
count = 0
ret = os.fork()

if ret == 0:
 print("Child with counter = ",count)
 for i in range (count, 255):
 count +=1
 sys.exit(count)

else:
 count += 1
 print("Parent with counter = ",count)
[pid,status] = os.wait()

P2

P1

READY RUN

BLOCKED

ZOMBIE

P1

P2

Blocked till

P2 becomes zombie

import os,sys
count = 0
ret = os.fork()

if ret == 0:
 print("Child with counter = ",count)
 for i in range (count, 255):
 count +=1
 sys.exit(count)

else:
 count += 1
 print("Parent with counter = ",count)
[pid,status] = os.wait()

Example: exit & wait in Python

30

P2

P1

READY RUN

BLOCKED

ZOMBIE

P2

P1

count is 255 (0xff)
exit (255);

import os,sys
count = 0
ret = os.fork()

if ret == 0:
 print("Child with counter = ",count)
 for i in range (count, 255):
 count +=1
 sys.exit(count)

else:
 count += 1
 print("Parent with counter = ",count)
[pid,status] = os.wait()
…

Example: exit & wait in Python

31

P1

READY RUN

BLOCKED

ZOMBIE

P1

Status is 65280 (0xff00)

See check_status(pid, status)

#include <unistd.h> // fork
#include <stdio.h> // printf
#include <sys/wait.h> // wait
#include <stdlib.h> // exit
int main(int argc, char * argv[]) {
 int i, pid, status, code;
 int count = 0;
 int ret = fork();
 if (ret == 0) {
 printf("Child with counter = %d\n",count);
 for (i=count;i<255;i++) {
 count ++;
 }
 exit(count);
 }
 else {
 count += 1;
 printf("Parent with counter = %d\n",count);
 pid = wait(&status);
 if WIFEXITED(status) {
 code = WEXITSTATUS(status);
 printf("Child %d is dead: %d\n",pid,status);
 }
 }
}
…

Example: exit & wait in C

32

P1

READY RUN

BLOCKED

ZOMBIE

P1

Status is 65280 (0xff00)

See check_status(pid, status)

Example: exit conventions

Error codes in exit(…) follow some common conventions
Code 0: program exited successfully

Code 1
Minor issues, e.g., grep returns 1 if no matching lines are found in any files

Errors occurred, e.g., find

Code 2 and above
Errors occurred, e.g. grep could not open at least one of the files provided

Usually, no negative numbers are returned

33

Execute a new program

Current process replaces the program (file) that is executing
A whole new memory contents and register values are loaded from “filename”
It performs dynamic linking, if necessary, and starts the program from its entry point
Parameters:

filename: indicates the name of the program to be loaded and executed (PATH is used to find it)
argX: hold the command line arguments for the program to be executed
args[]: same as argX, but in array format.

Behavior
If the new program can be found, loaded and started, it never returns

Once it is replaced, the previous memory contents (e.g. code, data) are not there any more
On Unix, the new executable is loaded into the current process, and will have the same process id as
the caller. In Python, errors will be reported as OSError exceptions.

E.g. the “filename” is wrong, the user has no permission to execute the “filename”, etc.

34

os.execlp(file, arg0, arg1, ...)

os.execvp(file, args)

https://docs.python.org/3/library/exceptions.html#OSError

Example

 Child process replaces its code
by the “ls” program

Parent process waits until “ls”
finishes

Relation between fork and exec

import os,sys

pid = os.fork()
if pid == 0:
 os.execlp("ls","-l", "-a")
else:
 os.wait()
print("Parent about to finish")

Interprocess communication (IPC)

Inter Process Communication (IPC)

A complex problem can be solved with several processes that cooperates
among them. Cooperation means communication

Data communication: sending/receiving data
Synchronization: sending/waiting for events

There are two main models for data communication
Shared memory between processes

Processes share a memory area and access it through variables mapped to this area
This is done through a system call, by default, memory is not shared between processes

Message passing (Unit 4)
Processes uses some special device to send/receive data

We can also use regular files, but the kernel doesn’t offer any special support
for this case

IPC in Linux

Signals – Events send by processes belonging to the same user or by
the kernel

Pipes, aka FIFOs: special devices designed for process
communication. The kernel offers support for process
synchronization (Unit 4)

Sockets – Similar to pipes but it uses the network

Shared memory between processes – Special memory area accessible
for more than one process

Signals: idea

Signals: notification that an event has occurred

Signals received by a process can be sent by the kernel or by other
processes of the same user

Process A Process B

kernel

A send a signal to B

Kernel send a signal to B

Type of signals and management (I)

Each type of event has an associated signal
Type of events and associated signals are defined by the kernel

The type of signal is a number, but there exists constants that can be used inside
programs or in the command line

There are two signals that are not associated to any event, so the programmer
can assign any meaning to them → SIGUSR1 y SIGUSR2

Each process has associated a management to each signal
Default managements

A process can catch (change the associated management) to all type of signal
except SIGKILL and SIGSTOP

Type of signals and management (2)
So me signa ls

Ma in uses in this cou rse:

Pro cess syn chro nization

Time c ontro l (alarm s)

Name Action Event

SIGCHLD IGNORE Child stopped or terminated

SIGCONT CONT Continue if stopped

SIGSTOP STOP Stop a process

SIGINT END Interrupted from the keyboard (Ctrl-C)

SIGALRM END timer programmed by alarm has expired

SIGKILL END Finish the process

SIGSEGV CORE Invalid memory access

SIGUSR1 END Defined by the process

SIGUSR2 END Defined by the process

Type of signals and management (3)

Reaction of a process to a signal delivering is similar to the reaction to an
interrupt:

When a process receives a signal, it stops the code execution, executes the
management associated to that signal and then (if it survives) continues with the
execution of the code.

Processes can block/unblock the delivery of each signal except SIGKILL and
SIGSTOP (signals SIGILL, SIGFPE and SIGSEGV cannot be blocked when they are
generated by an exception).

When a process blocks a signal, if that signal is sent to the process it will not be
delivered until the process unblocks it.

The system marks the signal as pending to be delivered
Each process has bitmap of pending signals: it only can remember one pending delivery for each
type of singal

When a process unblocks a signal, it will receive the pending signal and will execute
the associated management

Signals basic interface

 Send a signal
 os.kill(pid, sig)

 Catch a signal
 signal.signal(signalnum, handler)

 Timer setting
 signal.alarm(time)
To send a signal.SIGALRM to the process self

 Variables defined in the signal module:
 https://docs.python.org/3/library/signal.html
 Check also man 7 signal

https://docs.python.org/3/library/signal.html#module-signal
https://docs.python.org/3/library/signal.html

Interface: send a signal

 os.kill(pid, sig)

Send signal sig to the process pid.

Constants for the specific signals available on the host platform are defined in
the signal module.

import os, signal

os.kill(os.getppid(), signal.SIGUSR1)

https://docs.python.org/3/library/signal.html#module-signal

Interface: catch a signal

 signal.signal(signalnum, handler)

Set the handler for signal signalnum to the function handler.
handler can be a callable Python object taking two arguments (signal number and
current stack frame)

Or one of the special values signal.SIG_IGN or signal.SIG_DFL

import os, signal

def f(i):
 print ”Caught! Signum: “,i)

signal.signal(signal.SIGUSR1, f)

https://docs.python.org/3/library/signal.html#signal.SIG_IGN
https://docs.python.org/3/library/signal.html#signal.SIG_DFL

Example: signal , kill

#example signal-kill
import signal
def handler(signum, frame):
 print ("hi!:")
 return 0
signal.signal(signal.SIGUSR1,handler)
while True:
 pass

jfornes@tiacos:~/ProcMan$ python3 signal-kill.py &
[1] 15029
jfornes@tiacos:~/ProcMan$ kill -USR1 15029
hi!:
jfornes@tiacos:~/ProcMan$ kill -USR1 15029
hi!:

Example: signal , kill

/* example signal-kill */
#include <signal.h>
#include <unistd.h>
void handler(int signum) {write(1,"hi!\n",4);}
int main(int argc, char* argv[]) {
 signal(SIGUSR1,handler);
 for(;;);
}

jfornes@CAOS:~/ProcMan$ cc -o signal-kill example_signal-kill.c
jfornes@CAOS:~/ProcMan$./signal-kill
[1] 15029
jfornes@CAOS:~/ProcMan$ kill -USR1 15029
hi!:
jfornes@CAOS:~/ProcMan$ kill -USR1 15029
hi!:
jfornes@CAOS:~/ProcMan$ kill -KILL 15029
[1] + killed ./signal-kill

Signals: Sending and delivering

Process A Process B

kernel

“A sends a signal to B”→ system call

kill(PID_B,signal)

The Kernel launches the signal management

What really happens?: the kernel offers the service to pass the information.

PCB process B

Signal management

Delivering a SIGCHLD signal

When a child process terminates, the kernel sends a SIGCHLD to the
parent

Default disposition for SIGCHLD is ignore

A child that terminates, but has not been waited for becomes a "zombie".
it will consume a slot in the kernel process table, and if this table fills, it will not be

possible to create further processes.

 A parent call to os.wait() will block until all children have terminate

 Now, parent has a way to obtain information about the child without
blocking

Delivering a SIGCHLD signal
5 def check_status(pid, status):

 6 if os.WIFEXITED(status):
 7 code = os.WEXITSTATUS(status)
 8 print("Process ", pid, "ends with exit code ", code)
 9 else:
10 signum = os.WTERMSIG(status)
11 print("Process ", pid, "ends signal number ", signum)
12 return 0
13
14 def child_handler(signum, frame):
15 [pid, status] = os.wait()
16 check_status(pid, status)
17 return 0
18
19 signal.signal(signal.SIGCHLD, child_handler)
20 pid = os.fork()

...

Delivering a SIGCHLD signal
#include <stdlib.h>

#include <unistd.h>
#include <sys/wait.h>
#include <signal.h>

#include <stdio.h>

int check_status(int pid, int status) {

 int code, signum;
 if WIFEXITED(status) {
 code = WEXITSTATUS(status);

 printf("Process %d ends because an exit with exit code %d\n", pid,code);
 }
 else {

 signum = WTERMSIG(status);
 printf("Process %d ends because a sginal number %d",pid, signum);
 }

 return 0;
}
void child_handler(int signum) {

 int pid, status;
 pid = waitpid(-1,&status,WNOHANG);
 check_status(pid, status);

}
int main(int argc, char* argv[]) {
 int pid;

 signal(SIGCHLD, child_handler);
 pid = fork();

Relation with fork and exec

FORK: new process
Child inherits from parent

the signal table
the mask of blocked signals

Child resets
The bitmap of pending events
Timers

Events and timers are associated to a particular pid (the pid of the parent) and children are new
processes with new pids.

EXECLP: same process, new image
Process keeps

The bitmap of pending events
The mask of blocked signals
Timers

Process resets
The signal table→ the code of the process is different so the handle code of the signals is set to SIG_DFL

Error control

Error control

It is extremely important to check for errors
On system calls

On library calls

Manual pages describe the way system/library routines return errors

54

RETURN VALUE -- fork

 On success, the PID of the child process is returned in the parent, and

 0 is returned in the child. On failure, -1 is returned in the parent,

 no child process is created, and errno is set appropriately.

RETURN VALUE -- exit

 These functions do not return.

Error control

System calls usually return -1 on error and
Set the errno variable to contain the code of the specific error

55

RETURN VALUE -- wait

 wait(): on success, returns the process ID of the terminated child; on error, -1 is returned.

ERRORS

 ECHILD The process specified by pid does not exist or is not a

 child of the calling process.

 EINVAL The options argument was invalid.

Error control

Common
UNIX/Linux
error codes

56

/usr/include/asm-generic/errno-base.h

#ifndef _ASM_GENERIC_ERRNO_BASE_H

#define _ASM_GENERIC_ERRNO_BASE_H

#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

#define E2BIG 7 /* Argument list too long */

#define ENOEXEC 8 /* Exec format error */

#define EBADF 9 /* Bad file number */

#define ECHILD 10 /* No child processes */

#define EAGAIN 11 /* Try again */

#define ENOMEM 12 /* Out of memory */

#define EACCES 13 /* Permission denied */

#define EFAULT 14 /* Bad address */

#define ENOTBLK 15 /* Block device required */

#define EBUSY 16 /* Device or resource busy */

#define EEXIST 17 /* File exists */

...

#define EHWPOISON 133 /* Memory page has hardware error */

Error control

Although in Python we could use the negative return value to handle
low level errors, it is much better to use exceptions.

 Errors detected during execution are called exceptions and are not
unconditionally fatal.

 If the exception is not handled by the program, it results in error
messages:

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

Handling exceptions

 Each module defines its own exceptions

 In this unit we have to deal with OSError
 exception OSError(errno, strerror[, filename[, winerror[, filename2]]])

This exception is raised when a system function returns a system-related error

 errno, a numeric error code

from the C variable errno.

 General case:

try:
 # syscall

except OSError:
 # manage error

else:
 # after syscall works

finally:
 # anyway

https://docs.python.org/3/library/exceptions.html#OSError

Handling exceptions

 Exemple:
 A parent process creates a child and just after that waits for it

 Is this code ok?

try:
 pid = os.fork()
 os.wait()

except OSError as err:
 print("OS error: {0}".format(err))

Handling exceptions

 Exemple:
 A parent process creates a child and just after that waits for it

 Is this code ok?

try:
 pid = os.fork()
 os.wait()

except OSError as err:
 print("OS error: {0}".format(err))

jfornes@tiacos:~/ProcMan$ python3 error_control.py
OS error: [Errno 10] No child processes

 Raising Exceptions
With the statement raise we can

force a specified exception to occur

Caught the exception, but not handle it

Model-View-Controller pattern
Who tries?

The controller

Who raises the exception?
The model

Who prints the error message?
The view

Handling exceptions

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Handling exceptions

A try statement may have more than one except clause, to specify
handlers for different exceptions.

 try:
 pid = os.fork()
 except OSError as err:
 print("OS error: {0}".format(err))
 except:
 print ("Unknown error",sys.exc_info()[0])
 raise
 else:
 if pid == 0:
 print ("Child ", os.getpid())
 sys.exit(0)

~

Sample code to manage errors

1 #include <sys/wait.h>

2 #include <errno.h>
3 #include <stdlib.h>
4 #include <stdio.h>

5 int main() {
6 int status;
7 pid_t pid, mychild;

8
9 ... mychild = ...

10

11 pid = waitpid(mychild, &status, 0);
12 if (pid < 0) {
13 perror ("waitpid");

14 exit(1); // optional?
15 }
16 ...

If the pid returned is -1 ...
perror formats the error message:
 waitpid: No child processes
- If the application cannot continue, issue

the exit(...)
- If the application can continue, the user

will just get the error message

Error control

63

Exercises

Exercises

Analyse this code

Output if fork success?

Output if fork fails?

Try it!!

try:

 pid = os.fork()
 print(“Hello”)

except OSError:
 print(“Error”)

Exercises

Analyse this code

Output if fork success?

Output if fork fails?

Try it!!

 pid = fork();
 printf(“Hello”);

 if (pid==-1)
 printf(“Error”);

Exercises

 How many processes are created by this code?

 And by this one?

os.fork()

os.fork()
os.fork()

for _ in range (0,8):

 os.fork()

Exercises

 How many processes are created by this code?

 And by this one?

fork();

fork();
fork();

for (int i=0;i<8;i++)

 fork();

Exercises (exam)

import os, sys
def work():
 print("My pid is ", os.getpid())
 sys.exit(0)

for _ in range (0,3):
 pid = os.fork()
 if pid ==0:
 work()
while True:
 pass

 Draw the processes
hierarchy

 with sys.exit(0)

 without sys.exit(0)

Process hierarchy

With exit system call

parent

I=0 I=1 I=2

Without exit

parent

I=0 I=1 I=2

I=1 I=2 I=2

I=2

homeworks

Write a Python program that creates this process scheme:

Modify the code to generate this new one :

P3 PNP2P1

parent

parent P1 P2 P3 PN

…

…

Bibliography

Operating system concepts, Global edition. Hoboken: John Wiley & Sons, 2019.

A. Silberschatz, P. B. Galvin, and G. Gagne
https://discovery.upc.edu/permalink/34CSUC_UPC/18e7aks/alma991004148389706711

Introduces the presented concepts about OS

Tools: Performance Analysis of Parallel Python Applications
https://www.sciencedirect.com/science/article/pii/S1877050917307962

 Python documentation
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
 https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html

 C documentation
 The C Programming Language

Kernighan and Ritchie
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991000708719706711

 Linux man pages

79

https://discovery.upc.edu/permalink/34CSUC_UPC/18e7aks/alma991004148389706711
https://www.sciencedirect.com/science/article/pii/S1877050917307962
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/signal.html
https://docs.python.org/3/tutorial/errors.html
https://discovery.upc.edu/permalink/34CSUC_UPC/1q393em/alma991000708719706711

	Slide 1: COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
	Slide 2: Program vs Process
	Slide 3: Program vs Process
	Slide 4: Processes
	Slide 5: Process Control Block (PCB)
	Slide 6: Process Control Block (PCB)
	Slide 7: Multi-Process environment
	Slide 8: Parallelism vs Concurrency
	Slide 9: Execution Flows (Threads)
	Slide 10: Multi-threaded processes
	Slide 11: Execution Flows (Threads)
	Slide 12: Process State
	Slide 13: Process State Graph
	Slide 14: Kernel Internals for Process Management
	Slide 15: Schedulers
	Slide 16: Short Term Scheduler
	Slide 17: Impact of context switch on performance
	Slide 18: Performance/Efficiency of a Scheduling Policy
	Slide 19: Syscalls related to Process Management
	Slide 20: Process Creation
	Slide 21: Example: Fork in Python
	Slide 22: Example: Fork in Python
	Slide 23: Example: Fork in Python
	Slide 24: Example: Fork in Python
	Slide 25: Example: Fork in C
	Slide 26: Concurrent vs Sequential Process Creation
	Slide 27: End of process execution
	Slide 28: Wait for a child process to finish
	Slide 29: Example: exit & wait in Python
	Slide 30: Example: exit & wait in Python
	Slide 31: Example: exit & wait in Python
	Slide 32: Example: exit & wait in C
	Slide 33: Example: exit conventions
	Slide 34: Execute a new program
	Slide 35: Example
	Slide 36: Interprocess communication (IPC)
	Slide 37: Inter Process Communication (IPC)
	Slide 38: IPC in Linux
	Slide 39: Signals: idea
	Slide 40: Type of signals and management (I)
	Slide 41: Type of signals and management (2)
	Slide 42: Type of signals and management (3)
	Slide 43: Signals basic interface
	Slide 44: Interface: send a signal
	Slide 45: Interface: catch a signal
	Slide 46: Example: signal , kill
	Slide 47: Example: signal , kill
	Slide 48: Signals: Sending and delivering
	Slide 49: Delivering a SIGCHLD signal
	Slide 50: Delivering a SIGCHLD signal
	Slide 51: Delivering a SIGCHLD signal
	Slide 52: Relation with fork and exec
	Slide 53: Error control
	Slide 54: Error control
	Slide 55: Error control
	Slide 56: Error control
	Slide 57: Error control
	Slide 58: Handling exceptions
	Slide 59: Handling exceptions
	Slide 60: Handling exceptions
	Slide 61: Handling exceptions
	Slide 62: Handling exceptions
	Slide 63: Error control
	Slide 64: Exercises
	Slide 65: Exercises
	Slide 66: Exercises
	Slide 67: Exercises
	Slide 68: Exercises
	Slide 69: Exercises (exam)
	Slide 70: Process hierarchy
	Slide 71: homeworks
	Slide 79: Bibliography

