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Computer organisation
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Source: Patterson, David. Computer organization and design. Morgan Kaufmann 2021.



https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat

Memory components

P> A register is a flip-flop with several bits

P> A n-bits register consists n flip-flops with n
inputs, n outputs and 1 clock

P> Various types of registers are available
commercially |5

P In a shift register the output of the flip-flop,
is connected to the input of the flip-flop,, ,

P> A register file is an array of registers

P> Each register can be read by supplying a its
register number

4-bit register




Memory components

P> Random Access Memory
P> Larger amounts of memory than
registers
P> Slower access than registers

P> Organised as arrays of 2m rows of n bits

P> m bits needed to select a row
P> Read Write Selector (RWS) control bit

P> RWS =0, RAM reads the address and the
contents are available in O

P> RWS=1, RAM writes | at the address

ad;ress

m

RAM

RWS




Memory hierarchy

P> Instruction and data caches
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Data

Insn

L2

Data

Insn

L2

Data
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L2

Data
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P Level 2 - L2
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Memory organisation

P Endianness E.g.1234,,=04 D2,

P> The order of byte wise values in memory

P> Big-Endian . tata
P> Byte with most significant value: stored first (lowest memory address) .
P> Data networking and mainframes 0x0000: 0
P> Motorola 68000 and PowerPC G5 are big-endian 0x0001: D2
P> Little-Endian
P> Byte with least significant value: stored first (lowest memory address) @ data
P> x86 Intel and AMD64 processors family and most microprocessors 0x0000 : D2
0x0001: 04

P> Some architectures support both
pE.g. Arm and IBM POWER in full, recent x86 and x86-64 have limited support (movbe)



Big endian

P> The location address points to the Big end of the number
P> Like writing the left-to-right
num=0x42103278

@ data
<num> 0x0100: 42
10
32
0x0104: /8




Little Endian

P> The location address points to the Little endian of the number
P> Like writing the bytes right-to-left

@ data num=0x42103278
<num> 0x0100: 78
32
10
0x0104 s 42

https://en.wikipedia.org/wiki/Endianness
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Endianness in Python

P Handling binary data
P stored in files

P> or from network connections

Character Byte order Size

@ native native

= native standard
< little-endian standard
> big-endian standard

network (= big-

endian) standard

https://docs.python.org/3/library/struct.html

Alignment
native
none
none

none

none

>>> import sys

>>> gys.byteorder

'little’

>>> from struct import *

>>> pack(‘>hhl’, 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"
>>> pack(‘<hhl’, 1, 2, 3)
b'\x01\x00\x02\x00\x03\x00\x00\x00"
>>> calcsize('hhl")

16
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Central Processor Unit
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decode

load

execute

store
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Grouping operations together

P Arithmetic and Logic Unit — ALU

SrcO Srcl

inbits inbits
N /
%n bits

CVSZ Result

Opcode

P> Comparisons are implemented with the
subtraction and looking at the flag bits

https://en.wikipedia.org/wiki/Truth_table

 r »r »r »r B O O O O O O O O
R r O O O O - +» +» » O O O

x

0

0

o r 0 O O r B O O = —» O

o~ 0O —r O —r O B O +» O +» O

x

SrcO + Srcl

SrcO — Srcl

SrcO * Srcl

SrcO / Srcl

Shift left (SrcO) by Srcl
Shift right (Src0) by Srcl
Rotate left (Src0) by Srcl
Rotate right (Src0) by Srcl
SrcO AND Srcl

SrcO OR Srcl

SrcO XOR Srcl

NOT(SrcO)

NOT(Src1)

Reserved for future use
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Computation - programs

P Compute the sum of two vectors

P> Vectors = data;

>>> import numpy as np
>>> a = np.array([5, 2,
>>> b = np.array([7, 7, 8,

>>> a + b
array([1l2,

9,

11,

13,

3,

151)

data is stored in memory

4, 51)

9,

107])

move #0

while
load
load
add
store
i++

, 1

(i < N) {
rl, a[i]
r2, b[i]
rl,r2,r3
r3, c[i]

move
while

#0, r8
(r8 < N) {
load rl, a[r8]
load r2, b[r8]
add rl,r2,r3
store r3, c[r8]
add #1,r8
C

loop:

endloop:

move
move
move
move

cmp
ble

#a, rlé
#b, rl7
#c, rl8
#0, r8

#N, r8
endloop
load rl, rlé6[r8]
load r2, rl7[r8]

add rl,r2,r3
store r3, rl8[r8]
add #1,r8
bra loop

b




Data operations

P> ALUs and data file registers

b o

Integer Floating point Vector (integer and floating point)

\
ical

N
wlca / HA(“lFlloatingpoint

I
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Processors

P M Chips
PN cores/chip
P T threads/core

P LLC — last level cache
memory

Single chip
Core | LLC
Core | LLC
Core | LLC
Core | LLC
Core | LLC
Core | LLC
Core | LLC
Core | LLC

Memory ctrl.

—)
)

PCle

Power man.

External memory hierarchy

Input/output peripherals
Network
Disks
Video
Input

18



Processors

P What do we need?

P> A program — sequence of instructions
P> Or multiple sequences... iif concurrent/parallel

P> Data — operands should reach the instructions

P> Exercise... where should we store instructions and data?

P Exercise... how do we generate executable programs?

19



Hardware Thread

P> Each hardware thread independently...

P> Fetches instructions®

P> Decodes

P> Issues load memory accesses™
P> Executes™

P> Stores results*

* When executing a single thread per core, then
such a thread has all core resources available!
- Memory bandwidth
- Functional units

P Multithreading
P> Execute multiple threads in parallel

Single chip

Hardware <
Thread

L1 Data

L1 Insn




Software Thread

P> The instruction flow of a given running program. Any program has at
least one thread.
»Single'Threaded def add vectors(a,b,c):
for i in range(0, N):

c[i] = a[i] + b[1]
return

The thread executes
fromOtoN

P Multi-Threaded: execute multiple threads in parallel or concurrently
def add yvectors\(a,b,c):
for in range(.., ..): Every thread executes

[1) = A[i] + b[i] N/4 iterations of the loop
return



Hardware multithreading

P> Each hardware thread independently...

P Fetches instructions™

> Decodes * When executing a single thread per core, then

P> Issues load memory accesses* such a thread has all core resources available!
- Memory bandwidth

P Executes™ - Functional units
P> Stores results™

/ﬁ/il'o Main
M/’ Memory
) | dom - T
. ' Data
—— Nt ———— o — Insn
\W L3
\b’ J Data

Insn
22




Detailed memory access

P> Load instruction, data is not on the caches
P> Also, fetching instructions, instructions are not on the caches(*)

Core

Data cache miss

T

S —

L1 Insn

i?a:a cacﬁe MISS™

N

Insn

" J

(*) L1 Insn would be used for
fetching instructions

&)
Data cach

-

L3
Data
Insn

To Main

e miss Memory

From Main
Memory

23



Detailed memory access

P> Load instruction, data present in L1 Data

P> Also, fetching instructions, instruction present in L1 Insn (*)

Data cache hit!!
L1 Data

e L

— 1]

L1 Insn

-~

(*) L1 Insn would be used for

"

L2
Data
Insn

~

J

fetching instructions

L3
Data
Insn

To Main

H Memory

24



Detailed memory access

P> Cache management is a complex hardware feature

P What happens when the cache is already full of data...
and the core needs to bring more?

P> Cache eviction... Last recently used data may be evicted to the next cache level

1) Data cache miss 2) Data cache hit! — To Main
K : \ H Memory
| B —
L1 D
: 4) Load - P2t 2
Core i ged —

3 Eviction!
Insn
L1 Insn wx "
\ J Data

Insn

25




Sample code

P> Computing on vectors a, b, and ¢

P> Accesses reference main memory locations, not cache locations

P> Cache memories are transparently managed by the hardware

P Memory coherency: any read from any processor to a particular memory @,
returns the most recently written value to that @

P> Memory consistency: ensure writes to different memory @ will be seen in
the correct order from all processors

def add vectors(a,b,c):
for i in range(0, N):
c[i] a[i] + b[i]
return c

def mul vectors(a,b,c):
for i ig range(0, N):
c[i] = a[i] * b[i]
return |C

https://en.wikipedia.org/wiki/Consistency _model 0



_add_vectors:

L5:

L6:

subq $8, %rsp

cmpl  $0, N(%rip)
jle L6
movl 30, %eax

movslq %eax,%r9

salg $2, %r9

movss (%rdx;%r9), %xmm0O
addss (%r8,%r9), %xmm0
movss  %xmmaO, (%rcx,%r9)
addl $1, %eax

cmpl  %eax,| N(%rip)

jg L5

addg $8, %rsp
ret

Code generation details

__mult_vectors:

prologue/
entering function

init index

L10:

load a

add/mul a, b

store ¢

inc index

compare indexto N

L11:

epilogue/
leaving function

subq $8, %rip
cmpl  $0, N(%rip)
jle L11
movl $0, %eax

movslqg %eax,%r9

salg $2, %r9

movss (%rdx;%r9), %xmmO
mulss (%r8,%r9), %xmm0
movss %xmm0, (%rcx,%r9)
addl $1, %eax

cmpl  %eax,| N(%rip)

ja L10

addq $8, %rsp
ret

27



_add_vectors:

L5:

L6:

subq $8, %rsp
cmpl  $0, N(%rip)
jle L6

movl $0, %eax

movslq %eax,%r9

salg $2, %r9

movss (%rdx;%r9), %xmm0O
addss (%r8,%r9), %xmm0
movss  %xmmaO, (%rcx,%r9)
addl $1, %eax

cmpl  %eax,| N(%rip)

jg_ LS

addg $8, %rsp
ret

Code execution details

Processors / threads execute on a cycle by cycle basis
1.x — 2.x instructions per cycle

Init index immediate loads may take 1-10 cycles

load a loads may take 1 — 200 cycles (L1 ... Main mem)
add a, b stores may be less costly... Store buffer

store ¢ integer instructions 1-4 cycles

inc index floating point instructions 8-30 cycles
compare index to N Jump instructions 1-20 cycles

28



Core details

P> Instructions need the use of registers for bringing data to the thread
P> Load/store instructions bring data from memory (also mov, add, mul...)
P> Computation instructions use the ALUs to process data (add, mul...)
P> Control instructions break the execution sequence (conditionally...)

Vector 7 Core threads may share Vector “-

B AN
M ' [ 3 = I
register \“1 1§ some resources... ALUs... reg|ster \ B
=D N

A ' Vector
reglster

Vector
register

-5
Vector g Core Vector

register / Ty reglster
\ S . A\

—

Vector : L Vector
. - =g . ' =5 =
' register 3], Such sharing may cause register t_‘t.

L
>
S

S delays in their execution... :




Complete processor/memory system

P> Most usually, systems have two or more chips
P NUMA — Non-Uniform Memory Access

|_|[E TN

| L1 D | 12
L] L3

L1 Insn/Data 1 cycle

& | RAM Node 0 L2 15 cycles
L3 60 cycles

NUMA
Node 0

Main memory
Local node 200 cycles
Remote node 250 cycles

RN

%

Node 1

o |[E L3 | ¢=) g RAM Node 1

U
NUMA U
U
!

System board (no I/O yet)




https://richardjgreen.net/tags/hyper-v/

Example of multiprocessor motherboard

P> Schematics

P> Two processors
P> Two memory nodes

P Exercise... where are
L1l, L1D, L2, L3?




https://community.mellanox.com/s/article/understanding-numa-node-for-performance-benchmarks

Example of multiprocessor motherboard

P> Two processors and two memory nodes

processor
sockets

Liiry

,,,,,,,,

1/0 slots

memory slots (PCle)

(RAM)

32



Software/hardware mapping

P> How the software uses this architecture?

Virtual memory space (process)

~ O QU ~+ U

shared Threads
libs stacks

I/O to devices, disks...
TN
’/ ! Operating System w;::gows /

/2

||_|. ﬁ\

13 |4 RAM Node 0

Virtual memory space (OS)
d

a Threads
t stacks
a

™ O O o

Memory mapping
(to OS and process)

cal memory 33




Current processor chips

blntel Xeon E7 v4 fam||y https://ark.intel.com Intel processor descriptions
P14 nm technology
P24 cores / hyperthreading (2), 2.2 — 3.4 GHz.
P> L3 cache 60MB.
P MAX CPU supported 8 sockets
p3.07 TB. MAX RAM 1866 MHz., 4 memory channels
P> PCle x4, x8, x16

34


https://ark.intel.com/

Current processor chips

» IBM Power 9 https://www.ibm.com/it-infrastructure/power/power9
P14 nm technology
P24 cores / SMT (8), 3.0 — 4.0 GHz.
P L1 caches 32+32 KB.
P L2 cache 512 KB.
P L3 cache 120MB.
P MAX CPU supported 4-8 and more sockets
» 2 TB MAX RAM DDR4
P PCle v4 x4, x8, x16

35
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Current processor chips

}Intel KNL — Xeon Phi 72x5 intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core
P14 nm technology
P72 cores 1.5—-1.6 GHz.
P L2 cache 36 MB.
P MAX CPU supported 1 socket?
P 384 GB. MAX RAM DDR4
P PCle v3 x4, x8, x16

36
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Current processor chips

»ARM Cortex-A77 https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
P 7 nm technology
P> aarch64 — ARMvS8-A
P 4-8 cores
P> DynamlQ Technology — (big-LITTLE)

P> ARM Cortex-A72 — A64FX (Fujitsu)
7 nm
P ARMvVS.2
P48 cores
P> 512-bit SIMD Scalable Vector Extensions (SVE)

37
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Current processor chips

P Apple M3
P> 3 nm technology
P 4.05 GHz performance, 2.76 GHz efficiency.
P> aarch64 — ARMvS.6-A
P> 4 performance cores + 4 efficiency cores
P L1 cache 192+128 KiB per performance core
P> L1 cache 128+64 KiB per efficiency core
P> L2 cache 16 MiB
» RAM 8-24 GB
P GPU 8-10 cores

Apple unveils M3, M3Pro, and M3 Max

38
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Input/Output components

P> The |/O Bus extends the access to
P> Accelerators (GPUs, FPGASs)
P> Disks
P> Network

P>Human-Machine Interface Peripherals

; |o |

/

; O |

/1

RAM Node 0

RAM Node 1

]HHHHHU

HDMI

L

Y

PCle cards
GPUs / FPGAs
Networking

H_Y_)\

)

Sata
Disks

Y

HMI Peripherals
Keyboard/mouse
Video
Audio

40



Accelerators

P> Devices attached for computation

P> Need to transfer
P> code and data

to/from the device
P> Need to start/stop execution
P> Synchronisation

; || (S RAM Node 0

RAM Node 1

P> Configuration through mapped memory space
P> Use specific addresses to access the device’s

configuration registers
P> Access only allowed from the OS

> >
w e oc
go (@)
&2 E

= =

41



Access to accelerators/devices/peripherals

P> Accesses to device configuration
P> Uncached — do not access the caches
P> Property of the memory mapping
P> Accesses to device memory

P> Through specialised Direct Memory
Access (DMA) engines

| L3

\ \ s
NN NN N N N -
\ J\ J\

RAM Node 0

RAM Node 1

DEVICE
MEMORY
DEVICE
MEMORY

42



Sata and HMI Peripherals  |[meaeg—
Qe B 2
zzzZCoresz ; \ RAM Node 0
P> Disks Qe ;
P> Addressed by 8 (10 cerel :
W e :
H d RAM Node 1
> ea RaCorezuz ;
P Cylinder L
- NER =
P> Sector <S>
~N @@ @@
—
] ~— 00
P Video _
P With special video memory
P USB

P> Keyboard, mouse...
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Storage and file systems

P> Disks are usually split in partitions
P> Each partition can support a different file system

»/ (root) \/

da2
P /usr/local >09
P /home <da3

»/Opt \/
P>swap area \/

> ... sdal0
P> Different types of file systems exist

P> Linux: ext4, ext3, ext2, btrfs, hfs, jfs, xfs... \sdby

P Windows: ntfs, FAT, exFAT

sdb2

44



Networking z

| 13 RAM Node 0

N — N N
\

P> Send/receive information to N
)

P> Servers
P> Network-attached disks

P> Protocols
P Low-level — ethernet packet B

P High-level — TCP/IP D

P> Control based on memory mapped
configuration registers

| B (6] | S

NN N

usB usB

usB usB

HDMI

> Access from the OS

P> Data transfers based on DMA engines 1 (|

Switch/router
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Virtual Machine (VM)

P> A software package virtualises all physical resources of a computer

P> Virtualised resources can be emulated (simulates the real behaviour) or linked to access real
resources of the host machine

P> Multiple VMs can run on the same host. Everyone can run a different Operating System

|lllpor§a W Corél)) =]— _
ugordly — Wigordl)
ngor—ug ] Ld RAM Node O V M 1 llg:or = ] L]  RAM Node O
N = En=
C=m=0 (=
m ordll = L IR Y  RAM Node 1 m ordll = L SBE.d  RAM Node 1
{Eorell) f— {Coréll) |— L
[egordty - ) f \[Rigerdy )1
[ N y
° °
VM1 Host Machine VM?2
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