
COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Computer Architecture

Facultat d’Informàtica de Barcelona

Departament d’Arquitectura de Computadors

Jordi Fornés

2025/26 Spring Term

Computer organisation

 The so called von Neumann architecture

@

cpu i/o mem

data
ctrl

https://en.wikipedia.org/wiki/John_von_Neumannm

n

q

Computer organisation

 The so called von Neumann architecture

@

cpu i/o mem

data
ctrl

https://en.wikipedia.org/wiki/John_von_Neumann

https://www.fi.edu/case-files/mauchly-and-eckert

m

n

q

Computer organisation

 The so called von Neumann architecture

@

cpu i/o mem

data
ctrl

https://en.wikipedia.org/wiki/John_von_Neumann

https://www.fi.edu/case-files/mauchly-and-eckert

m

n

q

Memory components

 D latch
store the state value unless the clock input C is asserted
When C is asserted the value of input D replaces the value of Q

flip-flop
The output is equal to the value of the stored state
The internal state is changed only on clock edge

Source: Patterson, David. Computer organization and design. Morgan Kaufmann 2021.

https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat

Memory components

A register is a flip-flop with several bits
 A n-bits register consists n flip-flops with n

inputs, n outputs and 1 clock
Various types of registers are available

commercially

 In a shift register the output of the flip-flopi
is connected to the input of the flip-flopi+1

A register file is an array of registers
Each register can be read by supplying a its

register number

D

> C

R

Q0

D

> C

R

Q1

D

> C

R

Q2

D

 >C

R

Q3

clock clear

I0

I1

I2

I3

4 Q

4I

4-bit register

Memory components

Random Access Memory
Larger amounts of memory than

registers
Slower access than registers
Organised as arrays of 2m rows of n bits

m bits needed to select a row
Read Write Selector (RWS) control bit

RWS = 0, RAM reads the address and the
contents are available in O

RWS=1, RAM writes I at the address

RWS

RAM

2m · n

O I

@
m
address

n n

Memory hierarchy

Instruction and data caches
Level 1 – L1
Level 2 – L2
Level 3 – L3 --- LLC (usually)

8

Core

Core

Core

Core

L1 Data

L1 Insn

L1 Data

L1 Insn

L1 Data

L1 Insn

L1 Data

L1 Insn

L2
Data
Insn

L2
Data
Insn

L2
Data
Insn

L2
Data
Insn

L3
Data
Insn

Examples

AMD
	 Private L1
	 Shared L2
	 Shared L3

Intel
	 Private L1
	 Private L2
	 Shared L3

RAM

Memory organisation
 Endianness

 The order of byte wise values in memory

 Big-Endian
 Byte with most significant value: stored first (lowest memory address)
 Data networking and mainframes
Motorola 68000 and PowerPC G5 are big-endian

 Little-Endian
Byte with least significant value: stored first (lowest memory address)
x86 Intel and AMD64 processors family and most microprocessors

 Some architectures support both
E.g. Arm and IBM POWER in full, recent x86 and x86-64 have limited support (movbe)

E.g. 123410= 04 D216

@ data

0x0000: 04

0x0001: D2

@ data

0x0000: D2

0x0001: 04

Big endian

The location address points to the Big end of the number
Like writing the left-to-right

num=0x42103278

42
10
32
78

data@

<num> 0x0100:

 0x0104:

Little Endian

The location address points to the Little endian of the number
Like writing the bytes right-to-left

num=0x42103278

https://en.wikipedia.org/wiki/Endianness

78
32
10
42

data@

<num> 0x0100:

 0x0104:

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

Endianness in Python

 Handling binary data
stored in files
or from network connections

>>> import sys
>>> sys.byteorder
'little'
>>> from struct import *
>>> pack(‘>hhl’, 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03’
>>> pack(‘<hhl’, 1, 2, 3)
b'\x01\x00\x02\x00\x03\x00\x00\x00'
>>> calcsize('hhl’)
16

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none

! network (= big-
endian)

standard none

https://docs.python.org/3/library/struct.html

https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html

Computer organisation

 The so called von Neumann architecture

@

cpu i/o mem

data
ctrl

https://en.wikipedia.org/wiki/John_von_Neumann

https://www.fi.edu/case-files/mauchly-and-eckert

m

n

q

Central Processor Unit

fetch

decode

execute

store

load

Grouping operations together

Arithmetic and Logic Unit – ALU

Comparisons are implemented with the
subtraction and looking at the flag bits

15

n bitsn bits

n bits

Src0 Src1

Result

Opcode

Opcode Operation

0 0 0 0 Src0 + Src1
0 0 0 1 Src0 – Src1

0 0 1 0 Src0 * Src1

0 0 1 1 Src0 / Src1

0 1 0 0 Shift left (Src0) by Src1

0 1 0 1 Shift right (Src0) by Src1

0 1 1 0 Rotate left (Src0) by Src1

0 1 1 1 Rotate right (Src0) by Src1

1 0 0 0 Src0 AND Src1

1 0 0 1 Src0 OR Src1

1 0 1 0 Src0 XOR Src1

1 0 1 1 NOT(Src0)

1 1 0 0 NOT(Src1)

1 1 x x Reserved for future use

C V S Z

https://en.wikipedia.org/wiki/Truth_table

Computation - programs

Compute the sum of two vectors
Vectors = data; data is stored in memory

>>> import numpy as np
>>> a = np.array([5, 2, 3, 4, 5])
 >>> b = np.array([7, 7, 8, 9, 10])
>>> a + b
array([12, 9, 11, 13, 15])

move #0, i
while (i < N) {
 load r1, a[i]
 load r2, b[i]
 add r1,r2,r3
 store r3, c[i]
 i++
}

move #0, r8
while (r8 < N) {
 load r1, a[r8]
 load r2, b[r8]
 add r1,r2,r3
 store r3, c[r8]
 add #1,r8
}

 move #a, r16
 move #b, r17
 move #c, r18
 move #0, r8
loop:
 cmp #N, r8
 ble endloop
 load r1, r16[r8]
 load r2, r17[r8]
 add r1,r2,r3
 store r3, r18[r8]
 add #1,r8
 bra loop
endloop:
 …a bc

5 7

1
2

Data operations

ALUs and data file registers

17

Integer/logical Floating point

Integer Floating point Vector (integer and floating point)

Processors

M Chips
N cores/chip
T threads/core

LLC – last level cache
 memory

18

Core
Core
Core
Core
Core
Core
Core
Core

LLC

LLC

LLC

LLC

LLC

LLC

LLC

LLC

External memory hierarchy

Input/output peripherals
 Network
 Disks
 Video
 Input

PCIe

Power man.

Memory ctrl.

...

Single chip

Processors

What do we need?
A program – sequence of instructions

Or multiple sequences... iif concurrent/parallel
Data – operands should reach the instructions

Exercise... where should we store instructions and data?
Exercise... how do we generate executable programs?

19

Hardware Thread

Each hardware thread independently...
Fetches instructions*
Decodes
Issues load memory accesses*
Executes*
Stores results*

Multithreading
Execute multiple threads in parallel

20

* When executing a single thread per core, then
 such a thread has all core resources available!
 - Memory bandwidth
 - Functional units

Core

Core

Core

Core

Core

Core

Core

Core

LLC

LLC

LLC

LLC

LLC

LLC

LLC

LLC

PCIe

Power man.

Memory ctrl.

...

Single chip

Hardware
Thread

Core
L1 Data

L1 Insn

FPU

ALU

ALU

ALU

ALU

Software Thread

The instruction flow of a given running program. Any program has at
least one thread.

Single-Threaded

Multi-Threaded: execute multiple threads in parallel or concurrently

21

def add_vectors(a,b,c):
 for i in range(0, N):
 c[i] = a[i] + b[i]
 return c

def add_vectors(a,b,c):
 for i in range(…, …):
 c[i] = a[i] + b[i]
 return c

The thread executes
from 0 to N

Every thread executes
N/4 iterations of the loop

L3
Data
Insn

Hardware multithreading

Each hardware thread independently...
Fetches instructions*
Decodes
Issues load memory accesses*
Executes*
Stores results*

22

Core
L2

Data
Insn

L1 Data

L1 Insn

To Main
Memory

* When executing a single thread per core, then
 such a thread has all core resources available!
 - Memory bandwidth
 - Functional units

L3
Data
Insn

Detailed memory access

Load instruction, data is not on the caches
Also, fetching instructions, instructions are not on the caches(*)

23

Core
L2

Data
Insn

L1 Data

L1 Insn

To Main
MemoryData cache miss Data cache miss

Data cache miss

From Main
Memory

(*) L1 Insn would be used for
 fetching instructions

L3
Data
Insn

Detailed memory access

Load instruction, data present in L1 Data
Also, fetching instructions, instruction present in L1 Insn (*)

24

Core
L2

Data
Insn

L1 Data

L1 Insn

To Main
MemoryData cache hit!!

(*) L1 Insn would be used for
 fetching instructions

L3
Data
Insn

Detailed memory access

Cache management is a complex hardware feature
What happens when the cache is already full of data...

 and the core needs to bring more?
Cache eviction... Last recently used data may be evicted to the next cache level

25

Core
L2

Data
Insn

L1 Data

L1 Insn

To Main
Memory

1) Data cache miss 2) Data cache hit!

3) Eviction!

4) Load

Sample code

Computing on vectors a, b, and c
Accesses reference main memory locations, not cache locations

Cache memories are transparently managed by the hardware
Memory coherency: any read from any processor to a particular memory @,

returns the most recently written value to that @
Memory consistency: ensure writes to different memory @ will be seen in

the correct order from all processors

26

def add_vectors(a,b,c):
 for i in range(0, N):
 c[i] = a[i] + b[i]
 return c

https://en.wikipedia.org/wiki/Consistency_model

def mul_vectors(a,b,c):
 for i in range(0, N):
 c[i] = a[i] * b[i]
 return c

Code generation details

27

_add_vectors:
 subq $8, %rsp
 cmpl $0, _N(%rip)
 jle L6
 movl $0, %eax
L5:
 movslq %eax,%r9
 salq $2, %r9
 movss (%rdx,%r9), %xmm0
 addss (%r8,%r9), %xmm0
 movss %xmm0, (%rcx,%r9)
 addl $1, %eax
 cmpl %eax, _N(%rip)
 jg L5
L6:
 addq $8, %rsp
 ret

_mult_vectors:
 subq $8, %rsp
 cmpl $0, _N(%rip)
 jle L11
 movl $0, %eax
L10:
 movslq %eax,%r9
 salq $2, %r9
 movss (%rdx,%r9), %xmm0
 mulss (%r8,%r9), %xmm0
 movss %xmm0, (%rcx,%r9)
 addl $1, %eax
 cmpl %eax, _N(%rip)
 jg L10
L11:
 addq $8, %rsp
 ret

load a
add/mul a, b
store c
inc index
compare index to N

init index

prologue/
 entering function

epilogue/
 leaving function

Code execution details

28

_add_vectors:
 subq $8, %rsp
 cmpl $0, _N(%rip)
 jle L6
 movl $0, %eax
L5:
 movslq %eax,%r9
 salq $2, %r9
 movss (%rdx,%r9), %xmm0
 addss (%r8,%r9), %xmm0
 movss %xmm0, (%rcx,%r9)
 addl $1, %eax
 cmpl %eax, _N(%rip)
 jg L5
L6:
 addq $8, %rsp
 ret

load a
add a, b
store c
inc index
compare index to N

init index

Processors / threads execute on a cycle by cycle basis
 1.x – 2.x instructions per cycle

 immediate loads may take 1-10 cycles

 loads may take 1 – 200 cycles (L1 ... Main mem)
 stores may be less costly... Store buffer
 integer instructions 1-4 cycles
 floating point instructions 8-30 cycles
 jump instructions 1-20 cycles

Core details

Instructions need the use of registers for bringing data to the thread
Load/store instructions bring data from memory (also mov, add, mul...)
Computation instructions use the ALUs to process data (add, mul...)
Control instructions break the execution sequence (conditionally...)

29

Core

Vector
register

s Vector
register

s Vector
register

s
Vector
register

s

Vector
register

s Vector
register

s Vector
register

s
Vector
register

s

Core threads may share
some resources... ALUs...

Such sharing may cause
delays in their execution...

Complete processor/memory system
Most usually, systems have two or more chips

NUMA – Non-Uniform Memory Access

30

Core

Core

Core

Core

L1 D

L1 I

L1 D

L1 I

L1 D

L1 I

L1 D

L1 I

L2

L2

L2

L2

L3 RAM Node 1

Core

Core

Core

Core

L1 D

L1 I

L1 D

L1 I

L1 D

L1 I

L1 D

L1 I

L2

L2

L2

L2

L3 RAM Node 0NUMA
Node 0

NUMA
Node 1

L1 Insn/Data 1 cycle
L2 15 cycles
L3 60 cycles

Main memory
 Local node 200 cycles
 Remote node 250 cycles

System board (no I/O yet)

Example of multiprocessor motherboard

Schematics
Two processors
Two memory nodes

Exercise... where are
L1I, L1D, L2, L3?

31

https://richardjgreen.net/tags/hyper-v/

Example of multiprocessor motherboard

32

Two processors and two memory nodes
processor

sockets

memory slots
(RAM)

I/O slots
(PCIe)

https://community.mellanox.com/s/article/understanding-numa-node-for-performance-benchmarks

Software/hardware mapping

How the software uses this architecture?

33

Core

Core

Core

Core

L2

L2

L2

L2

L3 RAM Node 0

Operating System Linux
Windows
...

c
o
d
e

d
a
t
a

B
S
S

s
t
a
c
k

shared
libs

Threads
stacks

I/O to devices, disks...

Virtual memory space (process)

Virtual memory space (OS)

Physical memory

c
o
d
e

d
a
t
a

Threads
stacks

Memory mapping
(to OS and process)

Current processor chips

Intel Xeon E7 v4 family
14 nm technology
24 cores / hyperthreading (2), 2.2 – 3.4 GHz.
L3 cache 60MB.
MAX CPU supported 8 sockets
3.07 TB. MAX RAM 1866 MHz., 4 memory channels
PCIe x4, x8, x16

34

https://ark.intel.com Intel processor descriptions

https://ark.intel.com/

Current processor chips

IBM Power 9
14 nm technology
24 cores / SMT (8), 3.0 – 4.0 GHz.
L1 caches 32+32 KB.
L2 cache 512 KB.
L3 cache 120MB.
MAX CPU supported 4-8 and more sockets
2 TB MAX RAM DDR4
PCIe v4 x4, x8, x16

35

https://www.ibm.com/it-infrastructure/power/power9

https://www.ibm.com/it-infrastructure/power/power9

Current processor chips

Intel KNL – Xeon Phi 72x5
14 nm technology
72 cores 1.5 – 1.6 GHz.
L2 cache 36 MB.
MAX CPU supported 1 socket?
384 GB. MAX RAM DDR4
PCIe v3 x4, x8, x16

36

intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core

https://www.intel.com/content/www/us/en/products/sku/128690/intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core/specifications.html

Current processor chips

ARM Cortex-A77
7 nm technology
aarch64 – ARMv8-A
4-8 cores
DynamIQ Technology – (big-LITTLE)

ARM Cortex-A72 – A64FX (Fujitsu)
7 nm
ARMv8.2
48 cores
512-bit SIMD Scalable Vector Extensions (SVE)

37

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77

Current processor chips

Apple M3
3 nm technology
4.05 GHz performance, 2.76 GHz efficiency.
aarch64 – ARMv8.6-A
 4 performance cores + 4 efficiency cores
 L1 cache 192+128 KiB per performance core
L1 cache 128+64 KiB per efficiency core
L2 cache 16 MiB
 RAM 8-24 GB
 GPU 8-10 cores

38

Apple unveils M3, M3Pro, and M3 Max

https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/

Computer organisation

 The so called von Neumann architecture

@

cpu i/o mem

data
ctrl

https://en.wikipedia.org/wiki/John_von_Neumann

https://www.fi.edu/case-files/mauchly-and-eckert

m

n

q

Input/Output components

The I/O Bus extends the access to
Accelerators (GPUs, FPGAs)
Disks
Network
Human-Machine Interface Peripherals

40

Core

Core

Core

Core

L
2
L
2
L
2
L
2

L
3 RAM Node 1

Core

Core

Core

Core

L
2
L
2
L
2
L
2

L
3 RAM Node 0

PCIe cards
 GPUs / FPGAs
 Networking

USB

HDMI

USB

USB USB

HMI Peripherals
 Keyboard/mouse
 Video
 Audio

Sata
 Disks

Accelerators

Devices attached for computation
Need to transfer

code and data
 to/from the device

Need to start/stop execution
Synchronisation

Configuration through mapped memory space
Use specific addresses to access the device’s

configuration registers
Access only allowed from the OS

41

Core

Core

Core

Core

L
2
L
2
L
2
L
2

L
3 RAM Node 1

Core

Core

Core

Core

L
2
L
2
L
2
L
2

L
3 RAM Node 0

USB

HDMI

USB

USB USB

I/O

G
PU

DE
VI

CE

M
EM

O
RY

I/O

G
PU

DE
VI

CE

M
EM

O
RY

Access to accelerators/devices/peripherals

Accesses to device configuration
Uncached – do not access the caches

Property of the memory mapping

Accesses to device memory
Through specialised Direct Memory

Access (DMA) engines

42

Core

Core

Core

Core

L
2

L
2
L
2

L
2

L3 RAM Node 1

Core

Core

Core

Core

L
2

L
2
L
2

L
2

L3 RAM Node 0

USB

HDMI

USB

USB USB

I/O

G
PU

DE
VI

CE

M
EM

O
RY

I/O

G
PU

DE
VI

CE

M
EM

O
RY

Sata and HMI Peripherals

Disks
Addressed by

Head
Cylinder
Sector

Video
With special video memory

USB
Keyboard, mouse...

43

Core

Core

Core

Core

L
2

L
2

L
2

L
2

L3 RAM Node 1

Core

Core

Core

Core

L
2

L
2

L
2

L
2

L3 RAM Node 0

USB

HDMI

USB

USB USB

Storage and file systems

Disks are usually split in partitions
Each partition can support a different file system

/ (root)
/usr/local
/home
/opt
swap area
...

Different types of file systems exist
Linux: ext4, ext3, ext2, btrfs, hfs, jfs, xfs...
Windows: ntfs, FAT, exFAT

44

sda1

sda2

sda3

sda10
...

sdb1

sdb2

Networking

Send/receive information to
Servers
Network-attached disks

Protocols
Low-level – ethernet packet
High-level – TCP/IP

Control based on memory mapped
configuration registers

Access from the OS
Data transfers based on DMA engines

45

Core

Core

Core

Core

L
2

L
2

L
2

L
2

L3 RAM Node 1

Core

Core

Core

Core

L
2

L
2

L
2

L
2

L3 RAM Node 0

USB

HDMI

USB

USB USB

EthernetInfiniband

Switch/router

Virtual Machine (VM)

A software package virtualises all physical resources of a computer
Virtualised resources can be emulated (simulates the real behaviour) or linked to access real

resources of the host machine
Multiple VMs can run on the same host. Everyone can run a different Operating System

46

Core

Core
Core

Core

RAM Node 1

Core

Core
Core

Core

RAM Node 0

U
S
B

HDMI

U
S
B

U
S
B

U
S
B

Core

Core
Core

Core

RAM Node 1

Core

Core
Core

Core

RAM Node 0

U
S
B

HDMI

U
S
B

U
S
B

U
S
B

VM1

VM2

VM1 VM2Host Machine

Bibliography

Computer Organization and Design (6th Edition)
D. Patterson and J. Hennessy
https://cataleg.upf.edu/record=b1582632~S11*cat

Several chapters introduce different types of data

 Computer Systems. A programmer’s perspective
Randal E. Bryant, David R. O’Hallaron
https://upfinder.upf.edu/iii/encore/record/C__Rb1318766

Chapters 4,5,6

47

https://cataleg.upf.edu/record=b1582632~S11*cat
https://upfinder.upf.edu/iii/encore/record/C__Rb1318766

