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Memory components

 D latch 
store the state value unless the clock input C is asserted 
When C is asserted the value of input D replaces the value of Q 

flip-flop 
The output is equal to the value of the stored state 
The internal state is changed only on clock edge

Source: Patterson, David. Computer organization and design. Morgan Kaufmann 2021.

https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat
https://cataleg.upf.edu/record=b1582632~S11*cat


Memory components

A  register is a flip-flop with several bits 
 A n-bits register consists n flip-flops with n 

inputs, n outputs and 1 clock 
Various types of registers are available 

commercially 

 In a shift register the output of the flip-flopi 
is connected to the input of the flip-flopi+1 

A register file is an array of registers 
Each register can be read by supplying a its 

register number
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Memory components

Random Access Memory 
Larger amounts of memory than 

registers 
Slower access than registers 
Organised as arrays of 2m rows of n bits 

m bits needed to select a row  
Read Write Selector (RWS) control bit 

RWS = 0, RAM reads the address and the 
contents are available in O 

RWS=1, RAM writes I at the address

RWS

RAM

2m · n

O I

@
m
address

n n



Memory hierarchy

Instruction and data caches 
Level 1 – L1 
Level 2 – L2 
Level 3 – L3 --- LLC (usually)
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Memory organisation
 Endianness 

 The order of byte wise values in memory 

 Big-Endian 
 Byte with most significant value: stored first (lowest memory address)  
 Data networking and mainframes  
Motorola 68000 and PowerPC G5 are big-endian 

 Little-Endian 
Byte with least significant value: stored first (lowest memory address)  
x86 Intel and AMD64 processors family and most microprocessors  

 Some architectures support both 
E.g. Arm and IBM POWER in full, recent x86 and x86-64 have limited support (movbe)  

 

E.g. 123410= 04 D216

@ data

0x0000: 04

0x0001: D2

@ data

0x0000: D2

0x0001: 04



Big endian

The location address points to the Big end of the number  
Like writing the left-to-right

num=0x42103278

42
10
32
78

data@

<num> 0x0100:

 0x0104:



Little Endian 

The location address points to the Little endian of the number 
Like writing the bytes right-to-left

num=0x42103278

https://en.wikipedia.org/wiki/Endianness 

78
32
10
42

data@

<num> 0x0100:

 0x0104:

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness


Endianness in Python

 Handling binary data  
stored in files  
or from network connections

>>> import sys 
>>> sys.byteorder
'little'
>>> from struct import * 
>>> pack(‘>hhl’, 1, 2, 3) 
b'\x00\x01\x00\x02\x00\x00\x00\x03’ 
>>> pack(‘<hhl’, 1, 2, 3) 
b'\x01\x00\x02\x00\x03\x00\x00\x00'
>>> calcsize('hhl’) 
16

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none

! network (= big-
endian)

standard none

https://docs.python.org/3/library/struct.html

https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html
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Central Processor Unit

fetch

decode

execute

store

load



Grouping operations together

Arithmetic and Logic Unit – ALU 

Comparisons are implemented with the 
subtraction and looking at the flag bits
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n bitsn bits

n bits

Src0 Src1

Result

Opcode

Opcode Operation

0 0 0 0 Src0 + Src1
0 0 0 1 Src0 – Src1

0 0 1 0 Src0 * Src1

0 0 1 1 Src0 / Src1

0 1 0 0 Shift left (Src0) by Src1

0 1 0 1 Shift right (Src0) by Src1

0 1 1 0 Rotate left (Src0) by Src1

0 1 1 1 Rotate right (Src0) by Src1

1 0 0 0 Src0 AND Src1

1 0 0 1 Src0 OR Src1

1 0 1 0 Src0 XOR Src1

1 0 1 1 NOT(Src0)

1 1 0 0 NOT(Src1)

1 1 x x Reserved for future use

C V S Z

https://en.wikipedia.org/wiki/Truth_table



Computation - programs

Compute the sum of two vectors 
Vectors = data;    data is stored in memory

>>> import numpy as np 
>>> a = np.array([5, 2, 3, 4, 5])
 >>> b = np.array([7, 7, 8, 9, 10]) 
>>> a + b 
array([12,  9, 11, 13, 15])

move  #0, i
while   (i < N) {
   load    r1, a[i]
   load    r2, b[i]
   add     r1,r2,r3
   store   r3, c[i]
   i++
}   

move  #0, r8
while   (r8 < N) {
   load    r1, a[r8]
   load    r2, b[r8]
   add     r1,r2,r3
   store   r3, c[r8]
   add     #1,r8
}   

            move  #a, r16
            move  #b, r17
            move  #c, r18
            move  #0, r8
loop:
            cmp    #N, r8
            ble      endloop
                 load    r1, r16[r8]
                 load    r2, r17[r8]
                 add     r1,r2,r3
                 store   r3, r18[r8]
                 add     #1,r8
                 bra      loop
endloop:
                 …a bc

5 7

1
2



Data operations

ALUs and data file registers

17

Integer/logical Floating point

Integer Floating point Vector (integer and floating point)



Processors

M Chips 
N cores/chip 
T threads/core 

LLC – last level cache 
          memory
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      Disks 
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      Input
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...

Single chip



Processors

What do we need? 
A program – sequence of instructions 

Or multiple sequences... iif concurrent/parallel 
Data – operands should reach the instructions 

Exercise... where should we store instructions and data?  
Exercise... how do we generate executable programs?

19



Hardware Thread

Each hardware thread independently... 
Fetches instructions* 
Decodes 
Issues load memory accesses* 
Executes* 
Stores results* 

Multithreading 
Execute multiple threads in parallel

20

* When executing a single thread per core, then 
   such a thread has all core resources available! 
       - Memory bandwidth 
       - Functional units
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Software Thread

The instruction flow of a given running program. Any program has at 
least one thread. 

Single-Threaded 

Multi-Threaded: execute multiple threads in parallel or concurrently

21

def add_vectors(a,b,c):
    for i in range(0, N):
        c[i] = a[i] + b[i]
    return c

def add_vectors(a,b,c):
    for i in range(…, …):
        c[i] = a[i] + b[i]
    return c

The thread executes 
from 0 to N

Every thread executes  
N/4 iterations of the loop



L3 
Data 
Insn

Hardware multithreading

Each hardware thread independently... 
Fetches instructions* 
Decodes 
Issues load memory accesses* 
Executes* 
Stores results*

22
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L1 Insn

To Main 
Memory

* When executing a single thread per core, then 
   such a thread has all core resources available! 
       - Memory bandwidth 
       - Functional units



L3 
Data 
Insn

Detailed memory access

Load instruction, data is not on the caches 
Also, fetching instructions, instructions are not on the caches(*)
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Core
L2 

Data 
Insn

L1 Data

L1 Insn

To Main 
MemoryData cache miss Data cache miss

Data cache miss

From Main 
Memory

(*) L1 Insn would be used for 
      fetching instructions



L3 
Data 
Insn

Detailed memory access

Load instruction, data present in L1 Data 
Also, fetching instructions, instruction present in L1 Insn (*)

24

Core
L2 

Data 
Insn

L1 Data

L1 Insn

To Main 
MemoryData cache hit!!

(*) L1 Insn would be used for 
      fetching instructions



L3 
Data 
Insn

Detailed memory access

Cache management is a complex hardware feature 
What happens when the cache is already full of data...  

   and the core needs to bring more? 
Cache eviction... Last recently used data may be evicted to the next cache level

25

Core
L2 

Data 
Insn

L1 Data

L1 Insn

To Main 
Memory

1) Data cache miss 2) Data cache hit!

3) Eviction!

4) Load



Sample code

Computing on vectors a, b, and c 
Accesses reference main memory locations, not cache locations 

Cache memories are transparently managed by the hardware 
Memory coherency: any read from any processor to a particular memory @, 

returns the most recently written value to that @ 
Memory consistency: ensure writes to different memory @ will be seen in 

the correct order from all processors

26

def add_vectors(a,b,c):
    for i in range(0, N):
        c[i] = a[i] + b[i]
    return c

https://en.wikipedia.org/wiki/Consistency_model

def mul_vectors(a,b,c):
    for i in range(0, N):
        c[i] = a[i] * b[i]
    return c



Code generation details

27

_add_vectors: 
        subq    $8, %rsp 
        cmpl    $0, _N(%rip) 
        jle     L6 
        movl    $0, %eax 
L5: 
        movslq  %eax,%r9 
        salq    $2, %r9 
        movss   (%rdx,%r9), %xmm0 
        addss   (%r8,%r9), %xmm0 
        movss   %xmm0, (%rcx,%r9) 
        addl    $1, %eax 
        cmpl    %eax, _N(%rip) 
        jg      L5 
L6: 
        addq    $8, %rsp 
        ret

_mult_vectors: 
        subq    $8, %rsp 
        cmpl    $0, _N(%rip) 
        jle     L11 
        movl    $0, %eax 
L10: 
        movslq  %eax,%r9 
        salq    $2, %r9 
        movss   (%rdx,%r9), %xmm0 
        mulss   (%r8,%r9), %xmm0 
        movss   %xmm0, (%rcx,%r9) 
        addl    $1, %eax 
        cmpl    %eax, _N(%rip) 
        jg      L10 
L11: 
        addq    $8, %rsp 
        ret

load a 
add/mul a, b 
store c 
inc index 
compare index to N

init index

prologue/ 
  entering function

epilogue/ 
  leaving function



Code execution details
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_add_vectors: 
        subq    $8, %rsp 
        cmpl    $0, _N(%rip) 
        jle     L6 
        movl    $0, %eax 
L5: 
        movslq  %eax,%r9 
        salq    $2, %r9 
        movss   (%rdx,%r9), %xmm0 
        addss   (%r8,%r9), %xmm0 
        movss   %xmm0, (%rcx,%r9) 
        addl    $1, %eax 
        cmpl    %eax, _N(%rip) 
        jg      L5 
L6: 
        addq    $8, %rsp 
        ret

load a 
add  a, b 
store c 
inc index 
compare index to N

init index

Processors / threads execute on a cycle by cycle basis 
          1.x – 2.x instructions per cycle  

           immediate loads may take 1-10 cycles 

           loads may take 1 – 200 cycles (L1 ... Main mem) 
           stores may be less costly... Store buffer 
           integer instructions              1-4 cycles 
           floating point instructions  8-30 cycles 
           jump instructions                 1-20 cycles



Core details

Instructions need the use of registers for bringing data to the thread 
Load/store instructions bring data from memory (also mov, add, mul...) 
Computation instructions use the ALUs to process data (add, mul...) 
Control instructions break the execution sequence (conditionally...)
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Core threads may share 
some resources... ALUs... 

Such sharing may cause 
delays in their execution...



Complete processor/memory system
Most usually, systems have two or more chips 

NUMA – Non-Uniform Memory Access
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L1 Insn/Data             1 cycle 
L2                             15 cycles 
L3                             60 cycles 

Main memory 
    Local node        200 cycles 
    Remote node   250 cycles

System board (no I/O yet)



Example of multiprocessor motherboard

Schematics 
Two processors 
Two memory nodes 

Exercise... where are 
L1I, L1D, L2, L3? 
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https://richardjgreen.net/tags/hyper-v/



Example of multiprocessor motherboard
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Two processors and two memory nodes
processor 

sockets

memory slots 
(RAM)

I/O slots 
(PCIe)

https://community.mellanox.com/s/article/understanding-numa-node-for-performance-benchmarks



Software/hardware mapping

How the software uses this architecture?
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Current processor chips

Intel Xeon E7 v4 family 
14 nm technology 
24 cores / hyperthreading (2), 2.2 – 3.4 GHz. 
L3 cache 60MB. 
MAX CPU supported   8 sockets 
3.07 TB. MAX RAM   1866 MHz., 4 memory channels 
PCIe x4, x8, x16

34

https://ark.intel.com     Intel processor descriptions

https://ark.intel.com/


Current processor chips

IBM Power 9 
14 nm technology 
24 cores / SMT (8), 3.0 – 4.0 GHz. 
L1 caches 32+32 KB. 
L2 cache 512 KB. 
L3 cache 120MB. 
MAX CPU supported  4-8 and more sockets 
2 TB MAX RAM DDR4  
PCIe v4 x4, x8, x16

35

https://www.ibm.com/it-infrastructure/power/power9

https://www.ibm.com/it-infrastructure/power/power9


Current processor chips

Intel KNL – Xeon Phi 72x5 
14 nm technology 
72 cores 1.5 – 1.6 GHz. 
L2 cache 36 MB. 
MAX CPU supported  1 socket? 
384 GB. MAX RAM DDR4  
PCIe v3 x4, x8, x16
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intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core

https://www.intel.com/content/www/us/en/products/sku/128690/intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core/specifications.html


Current processor chips

ARM Cortex-A77 
7 nm technology 
aarch64 – ARMv8-A  
4-8 cores 
DynamIQ Technology – (big-LITTLE) 

ARM Cortex-A72 – A64FX (Fujitsu) 
7 nm 
ARMv8.2 
48 cores 
512-bit SIMD Scalable Vector Extensions (SVE)

37

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77


Current processor chips

Apple M3 
3 nm technology 
4.05 GHz performance, 2.76 GHz efficiency.  
aarch64 – ARMv8.6-A  
 4 performance cores + 4 efficiency cores 
 L1 cache 192+128 KiB per performance core 
L1 cache 128+64 KiB per efficiency core  
L2 cache 16 MiB 
 RAM 8-24 GB 
 GPU 8-10 cores

38

Apple unveils M3, M3Pro, and M3 Max

https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
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Input/Output components

The I/O Bus extends the access to 
Accelerators (GPUs, FPGAs) 
Disks 
Network 
Human-Machine Interface Peripherals
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Accelerators

Devices attached for computation 
Need to transfer 

code and data 
    to/from the device 

Need to start/stop execution 
Synchronisation 

Configuration through mapped memory space 
Use specific addresses to access the device’s  

configuration registers 
Access only allowed from the OS
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Access to accelerators/devices/peripherals

Accesses to device configuration 
Uncached – do not access the caches 

Property of the memory mapping 

Accesses to device memory 
Through specialised Direct Memory 

Access (DMA) engines
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Sata and HMI Peripherals 

Disks 
Addressed by 

Head 
Cylinder 
Sector 

Video 
With special video memory 

USB 
Keyboard, mouse...
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Storage and file systems

Disks are usually split in partitions 
Each partition can support a different file system 

/ (root) 
/usr/local 
/home 
/opt 
swap area 
... 

Different types of file systems exist 
Linux: ext4, ext3, ext2, btrfs, hfs, jfs, xfs...  
Windows: ntfs, FAT, exFAT
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sda2

sda3

sda10
...

sdb1

sdb2



Networking

Send/receive information to 
Servers 
Network-attached disks 

Protocols 
Low-level – ethernet packet 
High-level – TCP/IP 

Control based on memory mapped 
configuration registers 

Access from the OS 
Data transfers based on DMA engines
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Virtual Machine (VM)

A software package virtualises all physical resources of a computer 
Virtualised resources can be emulated (simulates the real behaviour) or linked to access real 

resources of the host machine 
Multiple VMs can run on the same host. Everyone can run a different Operating System
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