UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

Bits

COMPUTER ARCHITECTURE AND OPERATING SYSTEMS
Bioinformatics

2025/26 Spring Term

Jordi Fornés

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Departament d’ Arquitectura de Computadors

Contents

> Binary representation

> Integer

> Real Numbers

> Symbols and characters
> Logical operations

» Conclusion

v

The bibliography

Contents

v

Binary representation

> Integer

> Real Numbers

> Symbols and characters
> Logical operations

» Conclusion

v

The bibliography

Numeral systems

> Humans are acostumed to decimal -,

(base 10) arithmetic 11V = H«%
> A computer performs only binary (bas: oz -

—_— \~
2) arithmetic | ST | |
> N-Dbit registers impose limitations on the size of fields and

require special treatment for large values

» Hexadecimal (base 16) allows a compact notation and a
straight forward conversion from/to binary.

Base conversion
dec bin hex

O 0000 O
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 ©
/7 0111 7
g8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Base conversion

To convert a base 10 (decimal) number to base 16 (hexadecimal):

314156 =16 * 19634 + 12 C
19634 =16 " 1227 + 2 2
1227 =16 76 + 11 B
/6=16"4+12 C
4=16"0+4 4

Read the remainders from bottom to top:
3141561010 — 4CB2C16

Base conversion

To convert a base 10 (decimal) number to base 2 (binary):

174 =2-874+0
87=2-43+1
43 =2-21+1
21=2-10+1
10=2-540
5=2-2+1
2=2-1+0
1=2-0+1

Read the remainders from bottom to top:

Base conversion

» To convert from base b a number b,with n digits, of the
formy, (v, »...Y1Y, to base 10 (decimal):

n—1
y = Zyi Nk
=0

> Examples:

01001010, =0-27+1-2°4+0-2°4+0-2*+1-2°40-224+1-2140-2°=74,,

3E,,=3-16'+14-16" =62

Numeral Systems in Python

> Constants starting with @b or @B are interpreted being in binary

>>> bin(15)

‘Ob1111°

>>> (0=00101

>>>

5

> Constants starting with @x or @X are interpreted being in hexadecimal
>>> hex(44252)

‘Oxacdc’

Contents

> Binary representation

» Integer

> Real Numbers

> Symbols and characters
> Logical operations

» Conclusion

v

The bibliography

10

Signed vs unsigned

Signed Bits Unsigned
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
-8 1000 8
-7 1001 9
-6 1010 10
-5 1011 11
-4 1100 12
-3 1101 13
-2 1110 14
-1 1111 15

2’'s Complement
Range

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

UMax

UMax -1

~ TMax 1.

‘/¢' TMax +1
.. TMax

Unsigned
Range

Usigned vs signed

> Unsigned: ordinary binary representation

n—1
y = Z y; - base'
i=0

» Range from 0 to 2" — 1

» Signhed: two’s complement

n—2
Y= =Y 2")y 2
=0

» Range from —2" 110 2771 — 1

12

Hexa, binary, unsigned, two’s complement

Hexa Binary Unsigned Signed
A 1010 23421 =10 2’+2'=-6
’ 0001 20=1 20=1
B 1011 23421 4+20=11 -23421420=-5
7 0111 22421 420=7 2°42'42°=7
C 1100 29 +22=12 -2 +2°=-4

13

Two's complement

> From positive to negative

> Reverse the bits and add 1, ignore the overflow
5,0=0101,; = 5,, = 1010, + 1, = 1011,
2,0 =0010,; = 2,,= 1101, + 1, = 1110,
> One special case:

> The two's complement of the most negative number representable
s itself

> Example: n = 4 bits, the most negative number representable is 23

14

Signed vs unsigned in Python

» numbers.Integral represent numbers in an unlimited range, subject
to available (virtual) memory only.

> Negative numbers are represented in a variant of 2's complement which
gives the illusion of an infinite string of sign bits extending to the left.

>>> g=-1
111...111,

> for the purpose of shift and mask operations, a binary representation is
assumed.

>>> g=~1

0

15

Python numbers.Integral

> Quoted from docs.python.org:

» Booleans (bool)
» These represent the truth values False and True.
> The two objects representing the values False and True are the only Boolean objects.

> The Boolean type is a subtype of the integer type, and Boo lean values behave like
the values 0 and 1, respectively, in almost all contexts.

> The exception being that when converted to a string, the strings "False” or "True" are
returned, respectively.

>>> type(True)
<type 'bool'>
>>> isinstance(True, int)

True

16

https://docs.python.org/3/library/numbers.html

Contents

> Binary representation

> Integer

» Real Numbers

> Symbols and characters
> Logical operations

» Conclusion

v

The bibliography

17

Real Numbers

Numbers with a fractional component

> Two main representations:
> Fixed-point vs Floating-point
> The radix point is fixed or can float anywhere
> The symbol to separate integer and fractional parts of a real

» Implementation: tradeoff between cost and precision
> Lack of hardware resources — e.g. Multimedia decoders

> Boost performance although degraded precision — e.g.
Playstations, Doom

18

Real Numbers

Fixed-point numbers

» Bits=1+m+n
> 1 bit for sign (if signed)
> m bits for integer component

> n bits for fraction component

S m n

> Notation: an sign- fraction

» Integer number without fraction component Qm.O

» Fractional number without integer component O,

19

Fixed-point Numbers

Value = — 20, + 2" 0!+ ...+ 2 + 2%, +27b,_ +272,_,+ ...+ 27",

> Programming language support
> G and C++ have no direct suport, but can be implemented
> Embedded-C supports it (implemented in GCC)

> Python has direct suport via decimal module

> Examples: s m n

¢« Q3p:—2°+2°4+21=-2 sign- SR

¢« 01,:=2'+2°+271=-24+1+405=05
¢« 0;:=24+2714272=—-1+054+025=-0.25

20

https://docs.python.org/3/library/decimal.html

Fixed-point Numbers

Accuracy problems
S

m n

<& »d »
< Ll | » N
| _

» Precision loss and overflow

fraction

> Results can require more bits than operands
> Round or truncate
» Specify different size for result

» Boundary numbers to prevent overflow

» Exception: overflow flag, if supported by hardware

21

Floating-point Numbers

S e k

<& »d » [
< Ll | » N »
| _

» Bits=1+e + k

v

1 bit for sign (if signed)
> e bits for exponent: 1,...,(2°—1) -1
> k bits for mantissa (fraction)

> There is an implicit 1-bit (top left) equals to 1, unless exponent is equal to
ZEero

> Most processors follow |EEE floating point standard

* First version on 1985
e Standardize formats

e Special Values

22

https://en.wikipedia.org/wiki/IEEE_754

Binary Format Floating-Point Number

Floatlng point reference for Intel Architecture

e Sign bitiss=0for ‘+’,ands =1 for -’

(also refer to ‘s’ as ‘sign’)

Sign | Biased Exponent Significand E-B . e Unbiased exponent is e = E— B —x1 + 1 for nonzero finite numbers
(—1)° X X.X3%3 - Xp_1X, X 2°77, if normal o
S E X1 |X2iX3i..iXp1! Xp | = o e For standard formats, x1 equals (E # 0) and is implicit
. - {(—1)5 X X1.X2X3 "+ Xp_q X X 26min, if denormal _ o
MsB J-bit Fraction (sB e For NaNs, the payload is the bit string from x3 to xp
Floating-Point Classes, Encodings, and Parameters Standard Formats* Extended Format* Non-Std*
E J Fraction Values Half (16b) Single (32b) Double (64b) Quad (128b) x87 (80b) t*** Bfloat (16b)
Zero 00...00 +Zero 0000 0000 0000 | OOOO 0000 0O0OOO 0O0OOO JOOOO 0OOOO .. OOOO|JfOOOO 0000 .. 0O0OO 0000
00..00 { 0| 00...01 +Dmin 0001 0000 0001 f OOOO 0000 0O0OOO 0001 JOOOO 0O0OOO .. 0001|0000 0000 .. 0001 0001
Denormal 1111 | +Dmax 03ff |oo7f ££££| 000f £ffff £fff £f££f | 0000 £EEf .. £EF£[0000 7££f .. £EEE| 007f
00...01 00...00 +Nmin 0400 0080 0000 | 0010 0000 0OOOO 0000 fJO0OO1 0000 .. OOOOJfOOO1 8000 .. 0OOOO 0080
Normal| < - +One 3c00 3f80 0000 | 3££0 0000 0000 0OOOO J3fff 0000 .. OOOO || 3£f££f 8000 .. 0000 3£80
11..10 11..11 +Nmax Tbff Tf7f ffff| 7fef ffff ffff ffff | 7ffe ffff .. ffff||7ffe £££ff .. £f£ff Tf7£
Infinity 00...00 | +Infinity 7¢c00 7£80 0000 7££0 0000 0000 0000 | 7f££f 0000 .. OOOOQ || 7£££ 8000 .. 0000 7£80
1| oo..01 |, , 7c01 7£80 0001] 7££0 0000 0000 0001 | 7£££f 0000 .. OOCO1 || 7£££f 8000 .. 0001 7£81
sNaN 01(:)11 +'sNaN 7dff Tfof ffff | 7££7 f£fff ffff ffff | 7££ff Tfff .. ffff||7£f£ff bfff .. £fff Tfbf
11141 10..00 | R Ind** fe00 ffcO 0000 | £££8 0000 0000 0000 | ££££f 8000 .. 0000 | £f£££f 000 .. 0000 ffcO
qNaN — “47gNaN 7e00 7fc0 0000 7££8 0000 0000 0000 | 7f£££f 8000 .. 0000 7££ff 000 .. 0000 7£c0
11..11 Tfff Tfff ffff) 7£ff f£fff ffff ffff | 7f£ff f££fff ... £f££ || 7£££f ££f£f .. £fff Tfff
Field{s|[E[J| F |s|E[J]| F S E J F S E J F S E J F s|E|[J|F
#ofBits|1(5(0(10]11 |8 (0|23 1 11 0 52 15 0 112 1 15 1 63 118(0|7
Exp. bias (B)| 0xOf (15) 0x7f (127) 0x3ff (1023) 0x3fff (16383) 0x3fff (16383) 0x7f (127)
€min : €max| —14 15 -126 | 127 -1022 1023 -16382 16383 -16382 16383 -126 | 127

* All examples are in little endian byte order
*** Two additional classes exist for x87 80-bit format: pseudo-denormal (E =0, J = 1) and unsupported (E # 0, J = 0)

** R Ind (Real Indefinite), a gNaN, must have sign bit s = 1 and payload = 00...00

23

https://www.intel.com/content/www/us/en/content-details/786447/floating-point-reference-sheet-for-intel-architecture.html

Floating-point numbers

k
Value = (—1)%8" . (1 + Z b(k_i)Z_i) . 2"
|

3 . y E = Exponent — E, .

> Example:

10111, +0.01111, = 10111.01111, = 1.011101111, - 2*

32-bit floating point representation:

Exponent 8b) =4, + E

max

Mantissa (23b) =0111011110...0,

01000001101110111100000000000000 = 41BBC000,,,,

Floating-point numbers
Support

> Float in Python:

> float is usually implemented using doub Le in C (64b)

> Check precission and implementation in sys. float_info

> decimal.Decimal for floating-point numbers with user-definable precision
> Most 32-bit architectures comprises 64-bit support in FPU (floating-point unit)

> |A-32 and x86-64 present 80-bit floating-point type (double-extended precision
format)

> Quad-precision (128-bit)
> Software support
> Few architectures provide hardware support

> E.g. IBM POWER9 processors (MareNostrum 4)

Floating-point numbers

Accuracy problems

Numbers that cannot be exactly represented as binary fractions
E.g. 107!
0.000110011001100110011001100110011001100110011001100110011001...

Conversion to integer loses acuracy due to truncate and roundoftf

» E.g. 56/7 = 8;0.56/0.07 = could be 7

> E.g. explosion of Ariane5 rocket(1996)

Conmutative, but not necessary associative and distributive
» (a + b) + ¢ could be not equal to a + (b + ¢)

» (a+ b) - ccould benotequaltoa-c+b-c

https://en.wikipedia.org/wiki/Ariane_flight_V88

Symbols and characters

Scalar data type: symbols and characters " -

&&&&&&&&&&&

#®
EEss

> Char data type: encode alphanumeric data and symbols

> Several character set encoding

> ASCII code (American Standard Code for Information Interchange)

Adopted by microcomputers
The standard for the early HTML
Single byte using the bottom 7 bits. From 0 to 127

The 128 values that represent the printable Latin A-Z (65-90), a-z
(97-122), 0-9 (48-57)

Many common punctuation characters

Several non-displayable device control codes (0-31 and 127

#
wwwww

FF
§8F SHERERR

E3 Y

27

Symbols and characters

Scalar data type: symbols and characters

&&&&&&&&&

33
it

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 , Space 6440 100 @, @ 96 60 140 `
11 001 Start of Header 33 21 041 ! ! 65 41 101 A, A 97 61 141 a a
2 2 002 Start of Text 34 22 042 ", " 66 42 102 B, B 98 62 142 b b
33 003 End of Text 35 23 043 #, # 67 43 103 C C 99 63 143 c, c¢
44 004 End of Transmission 36 24 044 $ $ 68 44 104 D D 100 64 144 d d
55 005 Enquiry 37 25 045 %, % 69 45 105 E E 101 65 145 e, e
66 006 Acknowledgment 38 26 046 &, & 70 46 106 F, F 102 66 146 f f
77 007 Bell 39 27 047 ' 71 47 107 G, G 103 67 147 g ¢
8 8 (010 Backspace 40 28 050 ((72 48 110 H, H 104 68 150 h h
99 011 Horizontal Tab 41 29 051)) 7349 111 I 1 105 69 151 i i

10 A 012 Line feed 42 2A 052 *, * 74 4A 112 J) 106 6A 152 j |
11 B 013 Vertical Tab 43 2B 053 +, + 75 4B 113 K, K 107 6B 153 k k
12 C 014 Form feed 44 2C 054 , 76 4C 114 L, L 108 6C 154 l |
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M, M 109 6D 155 m m
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N, N 110 6E 156 n n
15 F 017 ShiftIn 47 2F 057 /, / 79 4F 117 O O 111 6F 157 o, o
16 10 020 Data Link Escape 48 30 060 0 O 80 50 120 P P 112 70 160 p p
17 11 021 Device Control 1 49 31 061 1 1 8151 121 Q, Q 113 71 161 q q
18 12 022 Device Control 2 50 32 062 2, 2 8252 122 R R 114 72 162 r r
19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 115 73 163 s s
20 14 024 Device Control 4 52 34 064 4, 4 84 54 124 T T 116 74 164 t t
21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U, U 117 75 165 u u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V, V 118 76 166 v v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W, W 119 77 167 w, w
24 18 030 Cancel 56 38 070 8 8 88 58 130 ͆, X 120 78 170 x x
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y vy
26 1A 032 Substitute 58 3A 072 : 90 5A 132 Z, Z 122 7A 172 z, z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [| 123 7B 173 { {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135]] 125 7D 175 } }
30 1E 036 Record Separator 62 3E 076 >, > 94 5E 136 ^, ~ 126 7E 176 ~, ~
31 1F 037 Unit Separator 63 3F 077 ?, ? 95 5F 137 _ 127 7F 177 Del

“* ® § §*
g . R
R o
it g8 REEE

&&&&&&&&&&&

Several character set encoding

» 128 symbols are not enough!
» What about the last bit (128-255)?
* Windows-1252 code (CP-1252): also called ANSI
e Itis a superset of ISO-8859-1(more printable characters)
» Used by default on legacy components of Microsoft Windows
* ANSI comprises 8 bits: 1 additional bit compared to ASCII
» |SO-8859-1 code (Latin Alphabet)
« 1 full byte (256 characters): extension to ASCI|

The standard from HTML2.0 to HTML4.01

v

The Latin-1 code-page defines many characters and symbols used by Latin-based languages

IBM used code-page 437 that define non-printable characters

Shells allow the user to change code-pages, which causes the terminal to display different characters
> Nevertheless, 255 symbols are not enough!

* the solution: UNICODE

AL

“k

3»

F3 E3 pEE
. §§§§§ i
giid . e iis
i

»»»»»»»»»»»»

Handling Unicode L .

» Unicode or ISO/IEC 10646 is an international standard defining
every character/glyph used in almost every writing system on Earth

> Unicode also defines several character encodings:

« UTF-8: 1-byte for the first 127 code points (maintaining
compatibility with ASCII), and an optional additional 1-3 bytes (4
bytes total) for other characters

« UTF-16: 2-bytes for each character. UCS-2 (used internally by
Windows) supports encoding the first 65536 code points (know
as the Basic Multilingual Plane — BMP). UTF-16 extends UCS-2
by incorporating a 4-byte encoding for 17 additional planes of
characters

« UTF-32: 4-bytes per character

https://en.wikipedia.org/wiki/Unicodehttps:/en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/ISO/IEC_10646
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

Contents

> Binary representation

> Integer

> Real Numbers

> Symbols and characters
» Logical operations

» Conclusion

v

The bibliography

31

Logical operations

00 0
01 0
10 0

11 1

32

Basic operation (addition)

Operands: n bits

>

Pn—1Pn-2---P1Po
+Qn—l%fz—2' TN

rr,_1V,—n... 111
True sum: n+1 bits

Standard addition ignores the carry bit output
Implements modular arithmetic: p + g mod 2"
Example: p = 5,g = 4,n = 3

(5+4) mod 8 = 1

101 + 100 = 4 001

33

Combinational circuits

Xi Yi Ci Ci+ Si & Yi
O 0 O 0 O

o o0 1 0 1

o 1 0 0 1

o 1 1 1 O

1 0 0 0 1

i 0 1 1 0

i 1 0 1 0

i 1 1 1 1

Full adder's truth table

out

Images source: Gajski, Daniel. Principles of digital design. Prentice-Hall, Inc.

1996.

34

Bit-level operations in Python

> X <<Y

v

Returns x with the bits shifted to the left by y places, inserting zeroes on the right-hand-side

x=x-2

v

> Example:

>>>4<<1 — 8

00000100, — 000001000,

> Returns x with the bits shifted to the right by y places, inserting the sign bit on the left-hand-side.

X

» X = —
2y

> Example:

>>>4>>1— 2

00000100, — 000000010,

35

Bit-level operations in Python

> X &Y
» Bitwise AND
 Example:
>>> 0x69 & 0x55 = 0x41
> x|y
» Bitwise OR
 Example:

>>> 0x69 | 0x55 =0 0x7D

&

01101001,
01010101,

01000001,

01101001,
01111101,

01111101,

36

Bit-level operations in Python

> ~X

> The complement of x, ie, NOT x ~ 010000012

> Example: 10111110,
>>> ~0x41 = OxBE

» X N Yy
-~ Bitwise exclusive OR 01101001,
. Example: " 01010101,

>>> 0x69 A 0x55 = 0x3C 00111100,

Logical operations in Python

> Three Boolean operators: and, or, and not
> bool type with two values: True and False
> Any non-zero number is interpreted as True
> Relational operators: ==, =, > <, >= <=

> Boolean expressions:

X =

if x>2:
1f x<10:
print('Fits"')

1f x>2 and x <
print('Fits"')

1t 2<x<10:
print('Fits"')

else:
print('no fits')

38

Contents

> Binary representation

> Integer

> Real Numbers

> Symbols and characters
> Logical operations

» Conclusion

v

The bibliography

39

To sum up

> Memory is full of binary digits
> Hardware and software interpret bits
* Following some kind of codification
e Natural binary, two's complement, fixed point, floating point, unicode, ...
> There are a lot of scalar data types
* Integers, floats, chars, booleans
« Bitmaps (enumeration), pointers, ...
> And even more agreggated data types

* Arrays, structures, classes, unions, strings, heaps, stacks, dictionaries,

40

To sum up

$ od —-X CAOS. txt
0000000 53414143 4f41430a 41430a53 430a534f
0000020 0a534f41 53414143 4f41430a 41430a53

$ od —F CAOS. txt
0000000 6,099819095891594e+73 9,262436571139304e+14

0000020 2,037357287262983e+93 2,495654619179134e+06

$ od —a CAOS.txt

0000000
0000020

C
A

A
0

0
S

S
nl

nl
C

41

The bibliography

» Randal E. Bryant, David R. O'Hallaron 2015. Chapter 2.
® Computer Systems. A programmers perspective
> VanderPlas, Jake 2016. Chapter 3.

® Data Science Handbook

42

