
COMPUTER ARCHITECTURE AND OPERATING SYSTEMS

Bits

Facultat d’Informàtica de Barcelona

Departament d’Arquitectura de Computadors

Jordi Fornés

Bioinformatics

2025/26 Spring Term

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

2

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

3

Numeral systems

‣ Humans are acostumed to decimal
(base 10) arithmetic

‣ A computer performs only binary (base
2) arithmetic

4

‣ N-bit registers impose limitations on the size of fields and
require special treatment for large values

‣ Hexadecimal (base 16) allows a compact notation and a
straight forward conversion from/to binary.

Base conversion

5

dec bin hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Base conversion
To convert a base 10 (decimal) number to base 16 (hexadecimal):

314156 = 16 * 19634 + 12
19634 = 16 * 1227 + 2

1227 = 16 * 76 + 11
76 = 16 * 4 + 12
4 = 16 * 0 + 4
Read the remainders from bottom to top:

 3141561010 = 4CB2C16

6

C

2

B

C

4

Base conversion
 To convert a base 10 (decimal) number to base 2 (binary):

174 = 2 ⋅ 87 + 0
87 = 2 ⋅ 43 + 1
43 = 2 ⋅ 21 + 1
21 = 2 ⋅ 10 + 1

10 = 2 ⋅ 5 + 0
5 = 2 ⋅ 2 + 1
2 = 2 ⋅ 1 + 0
1 = 2 ⋅ 0 + 1

7

17410 = 101011102

Read the remainders from bottom to top:

Base conversion

‣ To convert from base a number ,with digits, of the
form to base (decimal):

‣ Examples:

b b n
yn−1yn−2…y1y0 10

y =
n−1

∑
i=0

yi ⋅ bi

8

010010102 = 0 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 = 7410

3E16 = 3 ⋅ 161 + 14 ⋅ 160 = 62

Numeral Systems in Python
‣ Constants starting with 0b or 0B are interpreted being in binary

>>> bin(15)

‘0b1111’

>>> d=0b101

>>> d

5

‣ Constants starting with 0x or 0X are interpreted being in hexadecimal

>>> hex(44252)

‘0xacdc’

9

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

10

Signed vs unsigned

‣ Unsigned: ordinary binary representation

‣ Range from 0 to

‣ Signed: two’s complement

‣ Range from to

y =
n−1

∑
i=0

yi ⋅ basei

2n − 1

y = − yn−1 ⋅ 2n−1
n−2

∑
i=0

yi ⋅ 2i

−2n−1 2n−1 − 1

12

Usigned vs signed

Hexa, binary, unsigned, two’s complement

13

23 + 21 = 10

20 = 1

23 + 21 + 20 = 11

22 + 21 + 20 = 7

23 + 22 = 12

−23 + 21 + 20 = − 5

22 + 21 + 20 = 7

−23 + 22 = − 4

1010

Hexa Binary Unsigned Signed

A

1

B 1011

7

C 1100

0001

0111

20 = 1

−23 + 21 = − 6

Two's complement
‣ From positive to negative

‣ Reverse the bits and add 1, ignore the overflow

‣ One special case:

‣ The two's complement of the most negative number representable
is itself

‣ Example: n = 4 bits, the most negative number representable is

510 = 01012; − 510 = 10102 + 12 = 10112

210 = 00102; − 210 = 11012 + 12 = 11102

−23

810 = 10002; − 810 = 01112 + 12 = 10002

14

Signed vs unsigned in Python

‣ numbers.Integral represent numbers in an unlimited range, subject
to available (virtual) memory only.

‣ Negative numbers are represented in a variant of 2's complement which
gives the illusion of an infinite string of sign bits extending to the left.

>>> a=-1

‣ for the purpose of shift and mask operations, a binary representation is
assumed.

>>> a=~1

0

111…1112

15

Python numbers.Integral
‣ Quoted from docs.python.org:

‣ Booleans (bool)

‣ These represent the truth values False and True.

‣ The two objects representing the values False and True are the only Boolean objects.

‣ The Boolean type is a subtype of the integer type, and Boolean values behave like
the values 0 and 1, respectively, in almost all contexts.

‣ The exception being that when converted to a string, the strings "False" or "True" are
returned, respectively.

>>> type(True)

<type 'bool'>

>>> isinstance(True, int)

True

16

https://docs.python.org/3/library/numbers.html

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

17

Real Numbers
 Numbers with a fractional component

‣ Two main representations:

‣ Fixed-point vs Floating-point

‣ The radix point is fixed or can float anywhere

‣ The symbol to separate integer and fractional parts of a real

‣ Implementation: tradeoff between cost and precision

‣ Lack of hardware resources e.g. Multimedia decoders

‣ Boost performance although degraded precision e.g.
Playstations, Doom

→

→

18

Fixed-point numbers

‣ Bits = 1 + m + n

‣ 1 bit for sign (if signed)

‣ m bits for integer component

‣ n bits for fraction component

‣ Notation:

‣ Integer number without fraction component 	

‣ Fractional number without integer component

Qm.n

Qm.0

Qn

19

Real Numbers

sign integer fraction

s m n

Value = − 2mb′￼s + 2m−1b′￼m−1 + … + 21b′￼1 + 20b′￼0 + 2−1bn−1 + 2−2bn−2 + … + 2−nb0

‣ Programming language support

‣ C and C++ have no direct suport, but can be implemented

‣ Embedded-C supports it (implemented in GCC)

‣ Python has direct suport via decimal module

‣ Examples:

•

•

•

Q3.0 : − 23 + 22 + 21 = − 2

Q1.2 : − 21 + 20 + 2−1 = − 2 + 1 + 0.5 = 0.5

Q3 : − 20 + 2−1 + 2−2 = − 1 + 0.5 + 0.25 = − 0.25

20

Fixed-point Numbers

sign integer fraction

s m n

https://docs.python.org/3/library/decimal.html

Accuracy problems

‣ Precision loss and overflow

‣ Results can require more bits than operands

‣ Round or truncate

‣ Specify different size for result

‣ Boundary numbers to prevent overflow

‣ Exception: overflow flag, if supported by hardware

21

Fixed-point Numbers

sign integer fraction

s m n

‣ Bits = 1+ e + k

‣ 1 bit for sign (if signed)

‣ e bits for exponent:

‣ k bits for mantissa (fraction)

‣ There is an implicit 1-bit (top left) equals to 1, unless exponent is equal to
zero

‣ Most processors follow IEEE floating point standard

• First version on 1985

• Standardize formats

• Special Values

1,…, (2e − 1) − 1

22

Floating-point Numbers

sign exponent mantissa

s e k

https://en.wikipedia.org/wiki/IEEE_754

Floating point reference for Intel Architecture

23

https://www.intel.com/content/www/us/en/content-details/786447/floating-point-reference-sheet-for-intel-architecture.html

https://www.intel.com/content/www/us/en/content-details/786447/floating-point-reference-sheet-for-intel-architecture.html

Floating-point numbers

Value = (−1)sign ⋅ (1 +
k

∑
1

b(k−i)2−i) ⋅ 2E

E = Exponent − Emax

sign exponent mantissa

s e k

‣ Example:

 32-bit floating point representation:

Sign (1b) = 0,

Exponent (8b) =

Mantissa (23b) =

23.4687510 = 2310 + 0.4687510 =

101112 + 0.011112 = 10111.011112 = 1.0111011112 ⋅ 24

E = 410

410 + Emax = 13110 = 100000112

0111011110…02

01000001101110111100000000000000 = 41BBC000hex

Floating-point numbers

‣ Float in Python:

‣ float is usually implemented using double in C (64b)

‣ Check precission and implementation in sys.float_info

‣ decimal.Decimal for floating-point numbers with user-definable precision

‣ Most 32-bit architectures comprises 64-bit support in FPU (floating-point unit)

‣ IA-32 and x86-64 present 80-bit floating-point type (double-extended precision
format)

‣ Quad-precision (128-bit)

‣ Software support

‣ Few architectures provide hardware support

‣ E.g. IBM POWER9 processors (MareNostrum 4)

Support

Floating-point numbers

‣ Numbers that cannot be exactly represented as binary fractions

‣ E.g.

‣ Conversion to integer loses acuracy due to truncate and roundoff

‣ E.g. ; could be

‣ E.g. explosion of Ariane5 rocket(1996)

‣ Conmutative, but not necessary associative and distributive

‣ could be not equal to

‣ could be not equal to

10−1

0.000110011001100110011001100110011001100110011001100110011001…

56/7 = 8 0.56/0.07 = 7

(a + b) + c a + (b + c)

(a + b) ⋅ c a ⋅ c + b ⋅ c

Accuracy problems

https://en.wikipedia.org/wiki/Ariane_flight_V88

Symbols and characters
Scalar data type: symbols and characters

27

‣ Char data type: encode alphanumeric data and symbols

‣ Several character set encoding

‣ ASCII code (American Standard Code for Information Interchange)

• Adopted by microcomputers

• The standard for the early HTML

• Single byte using the bottom 7 bits. From 0 to 127

• The 128 values that represent the printable Latin A-Z (65-90), a-z
(97-122), 0-9 (48-57)

• Many common punctuation characters

• Several non-displayable device control codes (0-31 and 127

Symbols and characters
Scalar data type: symbols and characters

28

Symbols and characters
Several character set encoding

29

‣ 128 symbols are not enough!

‣ What about the last bit (128-255)?

• Windows-1252 code (CP-1252): also called ANSI

• It is a superset of ISO-8859-1(more printable characters)

‣ Used by default on legacy components of Microsoft Windows

• ANSI comprises 8 bits: 1 additional bit compared to ASCII

• ISO-8859-1 code (Latin Alphabet)

• 1 full byte (256 characters): extension to ASCII

• The standard from HTML2.0 to HTML4.01

‣ The Latin-1 code-page defines many characters and symbols used by Latin-based languages

• IBM used code-page 437 that define non-printable characters

• Shells allow the user to change code-pages, which causes the terminal to display different characters

‣ Nevertheless, 255 symbols are not enough!

• the solution: UNICODE

Symbols and characters
Handling Unicode

30

‣ Unicode or ISO/IEC 10646 is an international standard defining
every character/glyph used in almost every writing system on Earth

‣ Unicode also defines several character encodings:

• UTF-8: 1-byte for the first 127 code points (maintaining
compatibility with ASCII), and an optional additional 1-3 bytes (4
bytes total) for other characters

• UTF-16: 2-bytes for each character. UCS-2 (used internally by
Windows) supports encoding the first 65536 code points (know
as the Basic Multilingual Plane – BMP). UTF-16 extends UCS-2
by incorporating a 4-byte encoding for 17 additional planes of
characters

• UTF-32: 4-bytes per character

https://en.wikipedia.org/wiki/Unicodehttps:/en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/ISO/IEC_10646
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

31

Logical operations

32

p q p AND q p OR q p XOR q NOT p

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

Basic operation (addition)
Operands: n bits

pn−1pn−2…p1p0

+qn−1qn−2…q1q0

rnrn−1rn−2…r1r0

33

‣ True sum: n+1 bits

‣ Standard addition ignores the carry bit output

‣ Implements modular arithmetic: p + q mod

‣ Example:

(5+4) mod 8 = 1

101 + 100 = 1 001

2n

p = 5,q = 4,n = 3

Combinational circuits

34

Xi Yi Ci Ci+ Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Full adder's truth table

si = xi ⊕ yi ⊕ ci

ci+1 = xiyi + ci(xi ⊕ yi)

Images source: Gajski, Daniel. Principles of digital design. Prentice-Hall, Inc. 1996.

Bit-level operations in Python

‣ x << y

‣ Returns x with the bits shifted to the left by y places, inserting zeroes on the right-hand-side

‣

‣ Example:

>>> 4<<1 8

‣ Returns x with the bits shifted to the right by y places, inserting the sign bit on the left-hand-side.

‣

‣ Example:

>>> 4>>1 2

x = x ⋅ 2y

→

000001002 → 0000010002

x =
x
2y

→

000001002 → 0000000102

35

‣ x & y

• Bitwise AND

• Example:

>>> 0x69 & 0x55 = 0x41

‣ x | y

• Bitwise OR

• Example:

>>> 0x69 | 0x55 =0 0x7D

36

Bit-level operations in Python

011010012

010101012

010000012

&

011010012

011111012

011111012

|

‣ ~x

‣ The complement of x, ie, NOT x

‣ Example:

>>> ~0x41 = 0xBE

‣ x ^ y

‣ Bitwise exclusive OR

‣ Example:

>>> = 0x69 ∧ 0x55 0x3C

37

Bit-level operations in Python

∼ 010000012

101111102

011010012
010101012

001111002

^

Logical operations in Python

‣ Three Boolean operators: and, or, and not

‣ bool type with two values: True and False

‣ Any non-zero number is interpreted as True

‣ Relational operators: ==, !=, >, <, >=, <=

‣ Boolean expressions:

38

x = 5
if x>2:
 if x<10:
 print('Fits')
if x>2 and x < 10:
 print('Fits')
if 2<x<10:
 print('Fits')
else:
 print('no fits')

Contents

‣ Binary representation

‣ Integer

‣ Real Numbers

‣ Symbols and characters

‣ Logical operations

‣ Conclusion

‣ The bibliography

39

To sum up
‣ Memory is full of binary digits

‣ Hardware and software interpret bits

• Following some kind of codification

• Natural binary, two's complement, fixed point, floating point, unicode, …

‣ There are a lot of scalar data types

• Integers, floats, chars, booleans

• Bitmaps (enumeration), pointers, …

‣ And even more agreggated data types

• Arrays, structures, classes, unions, strings, heaps, stacks, dictionaries,
…

40

To sum up
$ od -X CAOS.txt

0000000 534f4143 4f41430a 41430a53 430a534f

0000020 0a534f41 534f4143 4f41430a 41430a53

$ od -F CAOS.txt

0000000 6,099819095891594e+73 9,262436571139304e+14

0000020 2,037357287262983e+93 2,495654619179134e+06

$ od -a CAOS.txt

0000000 C A O S nl C A O S nl C A O S nl C

0000020 A O S nl C A O S nl C A O S nl C A

41

The bibliography

‣ Randal E. Bryant, David R. O'Hallaron 2015. Chapter 2.

• Computer Systems. A programmers perspective

‣ VanderPlas, Jake 2016. Chapter 3.

• Data Science Handbook

42

