
1

Design Methodology:
A walkthrough

Ramon Canal
2013

2

Design domains (Gajski i Kuhn)

Structural Behavioral

Physical / Geometric

Processor, memory

ALU, registers
Cell

Device, gate
Transistor

Program

Algorithm
Module

Boolean equation
Transfer function

IC

Macro

Functional unit

Gate

Masks

System level

Algorithmic

Logic
RT level

Circuit

System

Description

Design Methodology: Big Picture
System Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

Design Specification
• Written statement of functionality, timing,

area, power, testability, fault coverage,
etc.

• Functional specification methods:
– State Transition Graphs
– Timing Charts
– Algorithm State Machines (like flowcharts)
– HDLs (Verilog and VHDL)

Design Partition
• Partition to form an Architecture

– Interacting functional units
• Control vs. datapath separation
• Interconnection structures within datapath
• Structural design descriptions

– Components described by their behaviorals
• Register-transfer descriptions

– Top-down design method exploiting hierarchy
and reuse of design effort

Design Entry
• Primary modern method: hardware description language

– Higher productivity than schematic entry
– Inherently easy to document
– Easier to debug and correct
– Easy to change/extend and hence experiment with alternative

architectures
• Synthesis tools map description into generic technology description

– E.g., logic equations or gates that will subsequently be mapped into
detailed target technology

– Allows this stage to be technology independent (e.g., FPGA LUTs or
ASIC standard cell libraries)

• Behavioral descriptions are how it is done in industry today

Simulation and Functional
Verification

• Simulation vs. Formal Methods
• Test Plan Development

– What functions are to be tested and how
– Testbench Development

• Testing of independent modules
• Testing of composed modules

– Test Execution and Model Verification
• Errors in design
• Errors in description syntax
• Ensure that the design can be synthesized

– The model must be VERIFIED before the design methodology can
proceed

Design Integration and
Verification

• Integrate and test the individual components that have
been independently verified

• Appropriate testbench development and integration
• Extremely important step and one that is often the

source of the biggest problems
– Individual modules thoroughly tested
– Integration not as carefully tested
– Bugs lurking in the interface behavior among modules!

Presynthesis Sign-off
• Demonstrate full functionality of the design
• Make sure that the behavior specification

meets the design specification
– Does the demonstrated input/output behavior

of the HDL description represent that which is
expected from the original design
specification

• Sign-off only when all functional errors
have been eliminated

Gate-Level Synthesis and
Technology Mapping

• Once all syntax and functional errors have been eliminated,
synthesize the design from the behavior description
– Optimized Boolean description
– Map onto target technology

• Optimizations include
– Minimize logic
– Reduce area
– Reduce power
– Balance speed vs. other resources consumed

• Produces netlist according to target technology (standard cells,
FPGA, …)

Design Methodology: Big Picture
System Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

Postsynthesis Design Validation

• Does gate-level synthesized logic implement the same
input-output function as the HDL behavioral description?

HDL
Behavioral Desc Gate-Level Desc

Logic
Synthesis

Stimulus
Generator

Testbench for Postsynthesis
Design Validation

Response
Comparator

Postsynthesis Timing
Verification

• Are the timing specifications met?
• Are the speeds adequate on the critical paths?

– Can’t accurately be determined until actual physical layout is
understood and analyzed—length of wires, relative placement of
sources and sinks, number of switch matrix crosspoints
traversed, etc.

• Resynthesis may be required to achieve timing goals
– Resize transistors
– Modify architecture
– Choose a different target device or technology

Test Generation and Fault
Simulation

• This is NOT about debugging the design!
– Design should be correct at this stage, so …

• Determine set of test vectors to test for inherent fabrication flaws
– Need a quick method to sort out the bad from the good chips
– More exhaustive testing may be necessary for chips that pass the first

level
– More relevant for ASIC design than FPGAs

• Avoiding this step is one of the advantages of using the FPGA approach

• Fault simulation is used to determine how complete are the test
vectors

Placement and Routing
• ASIC Standard Cells

– Select the cells and placement them on the mask
– Interconnect the placed cells
– Choose implementation scheme for critical signals

• E.g., Clock distribution trees to minimize skew
– Insert scan paths

• FPGAs
– Placing functions into particular CLBs/Slices and committing

interconnections to particular wires in the switch matrix

Physical and Electrical Design
Rule Check

• Applies to ASICs primarily
– Are mask geometries correct to insure high probability of

successful fabrication?
– Fan-outs correct? Crosstalk signals within specification? Current

drops within specification? Noise levels ok? Power dissipation
acceptable?

• Many of these issues are not significant at a chip level
for an FPGA but may be an issue for the system that
incorporates the FPGA

Parasitic Extraction
• Extract geometric information from design

to determine capacitance
• Yields a much more realistic model of

signal performance and delay
• Are the speed (timing) and power goals of

the design still met?
• Could trigger another redesign/resythesize

cycle if not met

Design Sign-off
• All design constraints have been met
• Timing specifications have been met
• Mask set ready for fabrication

Design Methodology: Big Picture
System Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

Design Methodology: Big Picture
System Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

21

Physical Design Cycle
Circuit Partitioning

Floorplanning & Placement

Routing

Layout Compaction

Extraction and Verification

22

Physical Design Cycle
Circuit Partitioning – Partition a large circuit into
sub-circuits (called blocks). Factors like #blocks,
interconnections between blocks, … are
considered.

1

2

3

23

Physical Design Cycle
Floorplanning – Set up a plan for a good layout.
Place the blocks at an early stage when details
like shape, area, positions of I/O pin, … are not
yet fixed.

Deadspace

24

Floorplanning
• Blocks are placed in order to minimize area and the

connections between them.

25

Physical Design Cycle
Placement – Exact placement of the modules
(modules can be gates, standard cells, …).
Details of the design are known and the goal is
to minimize the total area and interconnect cost.

v

Feedthrough
Standard cell type 1
Standard cell type 2

26

Channel definitions
• Blocks are placed so empty rectangular spaces are left

between them. These spaces will be later used to make
the interconnection.

27

Physical Design Cycle
Routing – Complete the interconnections
between the modules. Factors like critical path,
wire spacing, … are considered. Include global
routing and detailed routing.

Feedthrough
Standard cell type 1
Standard cell type 2

28

Global Routing
• Each connection will go from each origin block, through

the channels until the end block.

29

Global Routing
• The length of the connections will depend on the

situation of the blocks rather than the way the routing is
done.

30

Detailed Routing
• The space required for each channel will depend on the

complexity and density of the connections.

31

Detailed Routing
• Aligned connections require a smaller channel (similar

to that of a bus).

32

Detailed Routing
• Non-aligned connections increment the complexity of the

routing and it increases the amount of space required.

33

Detailed Routing
• The number of crossings determines the space required.

The size of the channel may have to be increased.

34

Detailed Routing
• Aligned connections reduce dramaticaly the area

required of the channel for completing the routing.

35

Bus area
• The area of each bus is proportional to the number of

bits of the bus.

36

Bus area
• Turns are implemented in the “Manhattan” style. This

increases effective area.

37

Bus cross-coupling
• The bits in a bus can interfere negatively between them:

cross-coupling. (1st example)

38

Bus cross-coupling
• The bits in a bus can interfere negatively between them:

cross-coupling. (2nd example)

39

Bus cross-coupling
• If this is the case, the victim must be “protected” using

any isolating technique (e.g. increasing the separation).

40

Bus cross-coupling
• Another solution is to use differential information

between one signal and the neighbouring GND signal:
the glitch appears in both.

• We can measure the difference among both victims.

41

Power distribution
• Interlazed distribution minimizes the number of metal

levels required. The thickness of each channel will vary
according to the power consumption.

42

Physical Design Cycle
Compaction – Compress the layout from all
directions to minimize the chip area.

Verification – Check correctness of the layout.
Include DRC (Design Rule Checking), circuit
extraction (generate a circuit from the layout to
compare with the original netlist), performance
verification (extract geometric information to
compute resistance, capacitance, delay, ...)

43

Summing up Physical Design
• The area of the blocks is predictable:

– Depends of the number of transistors and the spacing.
– It does not depend on the connections.

• The area of the connections is not much predictable.
• If the blocks are larger than the routing: the connections

are determined by the separation among the blocks.
• If the routing dominates the blocks (in the same way as

buses): The buses behave now like blocks.
• In any other case it is needed to simulate the

connections to estimate their area (very sensible to the
floorplanning).

44

Implementation alternatives

45

Implementation Alternatives
• Alternatives

– integrated circuits
• programmable arrays - e.g. ROM, FPGA
• full custom fabrication

– hybrid integrated circuits
• silicon-on-silicon – 3D modules

– circuit boards
• discrete wiring - wire-wrap
• printed circuits

• Design rules
– topology and geometry constraints
– imposed by physics and manufacturing
– example: wires must be > 2 microns wide

46

IC implementation alternatives
• Full custom design

– no constraints - output is geometry
• highest-volume, highest performance designs

– requires some handcrafted design
• 5-10 transistors/day for custom layout

– use to design cells for other methods
– primary CAD tools

• layout editor, plotter

• Cell-based design
– compose design using a library of cells
– at board-level, cells are chips
– cell = single gate up to microprocessor
– primary CAD tools

• partitioning
• placement and routing

47

IC implementation alternatives
• Gate array design

– FPGAs are a form of gate array

• Standard cell design
• General cell design
• Full custom design

– still used for analog circuits Design
Styles

Custom Cell Symbolic Procedural

General Cell

Design Methods

Standard Cell

Gate Array
Implementation

Methods
Programmable Arrays

Custom

48

Gate Array Design
• Array of prefabricated gates/transistors
• Map cell-based design onto gates
• Wire up gates

– in routing channels between gates
– over top of gates (sea of gates)
– predefined wiring patterns to convert transistors to gates

• CAD problems
– placement of gates/transistors onto fixed sites
– global and local wire routing in fixed space

49

Standard Cell Design
• Design circuit using standard cells

– cells are small numbers of gates, latches, etc.

• Technology mapping selects cells
• Place and wire them

– cells placed in rows
• all cells same height, different widths

– wiring between rows - channels

• CAD problems
– cell placement - row and location within row
– wiring in channels
– minimize area, delay

50

General Cell Design
• Generalization of standard cells
• Cells can be large, irregularly shaped

– standard cells, RAMs, ROMs, datapaths, etc.

• Used in large designs
– e.g. Pentium has datapaths, RAM, ROM, standard cells, etc.

• CAD problems
– placement and routing of arbitrary shapes is difficult

Datapath

Cache
RAM

Std. Cells

Decode
PLA

uCode
ROM

51

Case study

Standard Cell implementation

52

Standard Cell Implementation
• Cells designed in a certain pattern
• Due to the standard pattern they can be

used in several circuits

+ Design reuse
- Non-adaptative design

53

A typical MOS gate
VDD

GND

PULL

UP

PULL

DOWN

Out

In1

In2

In3

In1

In2

In3

54

Standard Cell Structure

55

Standard Cell Structure

P-diff

N-diff

VDD

GND

Transistors are placed in a serial way. If we want them in paral·lel we will have
to add metal connections.

A OUT

B

IN

CA

CBAOUT

56

Bit slice design
• We can design a block that implements

all the operations for one bit (e.g. in a
multi-bit design, as in an adder)

• We have to take into account all input,
ouput and internal connections.

• Putting each cell together generates a
regular and dense structure.

• Usual way of designing a processor’s
datapath (registers + FU + shifters).

57

Bit slice design
• Block design from standard 1-bit cells

58

High performance devices
• Mixture of full custom, standard cells and macro’s
• Full custom for special blocks: Adder (data path), etc.
• Macro’s for standard blocks: RAM, ROM, etc.
• Standard cells for non critical digital blocks

Pentium Power PC

59

Case study

FPGA just for prototyping?

60

Why FPGAs?
• Custom ICs where sometimes designed to replace the large amount of

glue logic:
– reduced system complexity and manufacturing cost, improved performance.
– However, custom ICs are relatively very expensive to develop, and delay

introduction of product to market (time to market) because of increased
design time.

• Note: need to worry about two kinds of costs:
1. cost of development, sometimes called non-recurring engineering (NRE)
2. cost of manufacture
– A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

FPGA

ASIC

61

Why FPGAs?
• Therefore the custom IC approach was only viable for products with

very high volume (where NRE could be amortized), and which were
not time to market (TTM) sensitive.

• FPGAs were introduced as an alternative to custom ICs for
implementing glue logic:
– improved density relative to discrete SSI/MSI components (within

around 10x of custom ICs)
– with the aid of computer aided design (CAD) tools circuits could be

implemented in a short amount of time (no physical layout process, no
mask making, no IC manufacturing), relative to ASICs.

• lowers NREs
• shortens TTM

• Because of Moore’s law, the density (gates/area) of FPGAs
continued to grow through 00’s to the point where major data
processing functions can be implemented on a single FPGA.

62

Why FPGAs?
• FPGAs continue to compete with custom ICs for special processing

functions (and glue logic) but now also compete with microprocessors
in dedicated and embedded applications.
– Performance advantage over microprocessors because circuits can be

customized for the task at hand. Microprocessors must provide special
functions in software (many cycles).

• Summary:

ASIC = custom IC, MICRO = microprocessor
• Newer FPGAs even combine microprocessor cores, special multiplier

circuits, memory blocks, and configurable logic on a single chip.

performance NREs
Unit
cost TTM

ASIC ASIC ASIC
FPGA

MICRO
FPGA

MICRO
FPGA

MICRO

FPGA

ASIC
MICRO

63

Summary
• Logic design process influenced by available technology

AND economic drivers
– Volume, Time to Market, Costs, Power

• FPGA offer a valuable new sweet spot
– Low TTM, medium cost, tremendous flexibility (during and after

design is done - field upgrades are possible).

• Fundamentally tied to powerful CAD tools
• Build everything (simple or complex) from one set of

building blocks
– LUTs + FF + routing + storage + IOs

