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Design Specification
• Written statement of functionality, timing, 

area, power, testability, fault coverage, 
etc.

• Functional specification methods:
– State Transition Graphs
– Timing Charts
– Algorithm State Machines (like flowcharts)
– HDLs (Verilog and VHDL)



Design Partition
• Partition to form an Architecture

– Interacting functional units
• Control vs. datapath separation
• Interconnection structures within datapath
• Structural design descriptions

– Components described by their behaviorals
• Register-transfer descriptions

– Top-down design method exploiting hierarchy 
and reuse of design effort



Design Entry
• Primary modern method: hardware description language

– Higher productivity than schematic entry
– Inherently easy to document
– Easier to debug and correct
– Easy to change/extend and hence experiment with alternative 

architectures
• Synthesis tools map description into generic technology description

– E.g., logic equations or gates that will subsequently be mapped into 
detailed target technology

– Allows this stage to be technology independent (e.g., FPGA LUTs or 
ASIC standard cell libraries)

• Behavioral descriptions are how it is done in industry today



Simulation and Functional 
Verification

• Simulation vs. Formal Methods
• Test Plan Development

– What functions are to be tested and how
– Testbench Development

• Testing of independent modules
• Testing of composed modules

– Test Execution and Model Verification
• Errors in design
• Errors in description syntax
• Ensure that the design can be synthesized

– The model must be VERIFIED before the design methodology can 
proceed



Design Integration and 
Verification

• Integrate and test the individual components that have 
been independently verified

• Appropriate testbench development and integration
• Extremely important step and one that is often the 

source of the biggest problems
– Individual modules thoroughly tested
– Integration not as carefully tested
– Bugs lurking in the interface behavior among modules!



Presynthesis Sign-off
• Demonstrate full functionality of the design
• Make sure that the behavior specification 

meets the design specification
– Does the demonstrated input/output behavior 

of the HDL description represent that which is 
expected from the original design 
specification

• Sign-off only when all functional errors 
have been eliminated



Gate-Level Synthesis and 
Technology Mapping

• Once all syntax and functional errors have been eliminated, 
synthesize the design from the behavior description
– Optimized Boolean description
– Map onto target technology

• Optimizations include
– Minimize logic
– Reduce area
– Reduce power
– Balance speed vs. other resources consumed

• Produces netlist according to target technology (standard cells, 
FPGA, …)
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Postsynthesis Design Validation

• Does gate-level synthesized logic implement the same 
input-output function as the HDL behavioral description?

HDL
Behavioral Desc Gate-Level Desc

Logic
Synthesis

Stimulus
Generator

Testbench for Postsynthesis
Design Validation

Response
Comparator



Postsynthesis Timing 
Verification

• Are the timing specifications met?
• Are the speeds adequate on the critical paths?

– Can’t accurately be determined until actual physical layout is 
understood and analyzed—length of wires, relative placement of 
sources and sinks, number of switch matrix crosspoints
traversed, etc.

• Resynthesis may be required to achieve timing goals
– Resize transistors
– Modify architecture
– Choose a different target device or technology



Test Generation and Fault 
Simulation

• This is NOT about debugging the design!
– Design should be correct at this stage, so …

• Determine set of test vectors to test for inherent fabrication flaws
– Need a quick method to sort out the bad from the good chips
– More exhaustive testing may be necessary for chips that pass the first 

level
– More relevant for ASIC design than FPGAs

• Avoiding this step is one of the advantages of using the FPGA approach

• Fault simulation is used to determine how complete are the test 
vectors



Placement and Routing
• ASIC Standard Cells

– Select the cells and placement them on the mask
– Interconnect the placed cells
– Choose implementation scheme for critical signals

• E.g., Clock distribution trees to minimize skew
– Insert scan paths

• FPGAs
– Placing functions into particular CLBs/Slices and committing 

interconnections to particular wires in the switch matrix



Physical and Electrical Design 
Rule Check

• Applies to ASICs primarily
– Are mask geometries correct to insure high probability of 

successful fabrication?
– Fan-outs correct? Crosstalk signals within specification? Current 

drops within specification? Noise levels ok? Power dissipation 
acceptable?

• Many of these issues are not significant at a chip level 
for an FPGA but may be an issue for the system that 
incorporates the FPGA



Parasitic Extraction
• Extract geometric information from design 

to determine capacitance
• Yields a much more realistic model of 

signal performance and delay
• Are the speed (timing) and power goals of 

the design still met?
• Could trigger another redesign/resythesize 

cycle if not met



Design Sign-off
• All design constraints have been met
• Timing specifications have been met
• Mask set ready for fabrication
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Physical Design Cycle
Circuit Partitioning

Floorplanning & Placement

Routing

Layout Compaction

Extraction and Verification
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Physical Design Cycle
Circuit Partitioning – Partition a large circuit into 
sub-circuits (called blocks). Factors like #blocks, 
interconnections between blocks, … are 
considered.

1

2

3
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Physical Design Cycle
Floorplanning – Set up a plan for a good layout. 
Place the blocks at an early stage when details 
like shape, area, positions of I/O pin, … are not 
yet fixed.

Deadspace
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Floorplanning
• Blocks are placed in order to minimize area and the 

connections between them.
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Physical Design Cycle
Placement – Exact placement of the modules 
(modules can be gates, standard cells, …). 
Details of the design are known and the goal is 
to minimize the total area and interconnect cost.

v

Feedthrough
Standard cell type 1
Standard cell type 2
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Channel definitions
• Blocks are placed so empty rectangular spaces are left 

between them. These spaces will be later used to make 
the interconnection.
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Physical Design Cycle
Routing – Complete the interconnections 
between the modules. Factors like critical path, 
wire spacing, … are considered. Include global 
routing and detailed routing.

Feedthrough
Standard cell type 1
Standard cell type 2
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Global Routing
• Each connection will go from each origin block, through 

the channels until the end block.
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Global Routing
• The length of the connections will depend on the 

situation of the blocks rather than the way the routing is 
done.
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Detailed Routing
• The space required for each channel will depend on the 

complexity and density of the connections.
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Detailed Routing
• Aligned connections  require a smaller channel (similar 

to that of a bus).
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Detailed Routing
• Non-aligned connections increment the complexity of the 

routing and it increases the amount of space required.
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Detailed Routing
• The number of crossings determines the space required. 

The size of the channel may have to be increased.
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Detailed Routing
• Aligned connections reduce dramaticaly the area 

required of the channel for completing the routing. 
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Bus area
• The area of each bus is proportional to the number of 

bits of the bus.
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Bus area
• Turns are implemented in the “Manhattan” style. This

increases effective area.
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Bus cross-coupling
• The bits in a bus can interfere negatively between them: 

cross-coupling. (1st example)
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Bus cross-coupling
• The bits in a bus can interfere negatively between them: 

cross-coupling. (2nd example)
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Bus cross-coupling
• If this is the case, the victim must be “protected” using 

any isolating technique (e.g. increasing the separation).
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Bus cross-coupling
• Another solution is to use differential information 

between one signal and the neighbouring GND signal: 
the glitch appears in both. 

• We can measure the difference among both victims.
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Power distribution
• Interlazed distribution minimizes the number of metal 

levels required. The thickness of each channel will vary 
according to the power consumption.
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Physical Design Cycle
Compaction – Compress the layout from all 
directions to minimize the chip area.

Verification – Check correctness of the layout. 
Include DRC (Design Rule Checking), circuit 
extraction (generate a circuit from the layout to 
compare with the original netlist), performance 
verification (extract geometric information to 
compute resistance, capacitance, delay, ...)
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Summing up Physical Design
• The area of the blocks is predictable:

– Depends of the number of transistors and the spacing.
– It does not depend on the connections.

• The area of the connections is not much predictable.
• If the blocks are larger than the routing: the connections 

are determined by the separation among the blocks.
• If the routing dominates the blocks (in the same way as 

buses): The buses behave now like blocks.
• In any other case it is needed to simulate the 

connections to estimate their area (very sensible to the 
floorplanning).
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Implementation alternatives
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Implementation Alternatives
• Alternatives

– integrated circuits
• programmable arrays - e.g. ROM, FPGA
• full custom fabrication

– hybrid integrated circuits
• silicon-on-silicon – 3D modules

– circuit boards
• discrete wiring - wire-wrap
• printed circuits

• Design rules
– topology and geometry constraints
– imposed by physics and manufacturing
– example:  wires must be > 2 microns wide
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IC implementation alternatives
• Full custom design

– no constraints - output is geometry
• highest-volume, highest performance designs

– requires some handcrafted design
• 5-10 transistors/day for custom layout

– use to design cells for other methods
– primary CAD tools

• layout editor, plotter

• Cell-based design
– compose design using a library of cells
– at board-level, cells are chips
– cell = single gate up to microprocessor
– primary CAD tools

• partitioning
• placement and routing
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IC implementation alternatives
• Gate array design

– FPGAs are a form of gate array

• Standard cell design
• General cell design
• Full custom design

– still used for analog circuits Design
Styles

Custom Cell Symbolic Procedural

General Cell

Design Methods

Standard Cell

Gate Array
Implementation

Methods
Programmable Arrays

Custom
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Gate Array Design
• Array of prefabricated gates/transistors
• Map cell-based design onto gates
• Wire up gates

– in routing channels between gates
– over top of gates (sea of gates)
– predefined wiring patterns to convert transistors to gates

• CAD problems
– placement of gates/transistors onto fixed sites
– global and local wire routing in fixed space
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Standard Cell Design
• Design circuit using standard cells

– cells are small numbers of gates, latches, etc.

• Technology mapping selects cells
• Place and wire them

– cells placed in rows
• all cells same height, different widths

– wiring between rows - channels

• CAD problems
– cell placement - row and location within row
– wiring in channels
– minimize area, delay
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General Cell Design
• Generalization of standard cells
• Cells can be large, irregularly shaped

– standard cells, RAMs, ROMs, datapaths, etc.

• Used in large designs
– e.g. Pentium has datapaths, RAM, ROM, standard cells, etc.

• CAD problems
– placement and routing of arbitrary shapes is difficult

Datapath

Cache
RAM

Std. Cells

Decode
PLA

uCode
ROM
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Case study

Standard Cell implementation
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Standard Cell Implementation
• Cells designed in a certain pattern
• Due to the standard pattern they can be 

used in several circuits

+ Design reuse
- Non-adaptative design
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A typical MOS gate 
VDD

GND

PULL

UP

PULL

DOWN

Out

In1

In2

In3

In1

In2

In3



54

Standard Cell Structure
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Standard Cell Structure

P-diff

N-diff

VDD

GND

Transistors are placed in a serial way. If we want them in paral·lel we will have 
to add metal connections.

A OUT

B

IN

CA

CBAOUT 
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Bit slice design
• We can design a block that implements 

all the operations for one bit (e.g. in a 
multi-bit design, as in an adder)

• We have to take into account all input, 
ouput and internal connections.

• Putting each cell together generates a 
regular and dense structure.

• Usual way of designing a processor’s 
datapath (registers + FU + shifters).
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Bit slice design
• Block design from standard 1-bit cells
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High performance devices
• Mixture of full custom, standard cells and macro’s
• Full custom for special blocks: Adder (data path), etc.
• Macro’s for standard blocks: RAM, ROM, etc.
• Standard cells for non critical digital blocks

Pentium Power PC
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Case study

FPGA just for prototyping?
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Why FPGAs?
• Custom ICs where sometimes designed to replace the large amount of 

glue logic:
– reduced system complexity and manufacturing cost, improved performance.
– However, custom ICs are relatively very expensive to develop, and delay 

introduction of product to market (time to market) because of increased 
design time. 

• Note: need to worry about two kinds of costs:
1. cost of development, sometimes called non-recurring engineering (NRE)
2. cost of manufacture
– A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

FPGA

ASIC
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Why FPGAs?
• Therefore the custom IC approach was only viable for products with 

very high volume (where NRE could be amortized), and which were 
not time to market (TTM) sensitive.

• FPGAs were introduced as an alternative to custom ICs for 
implementing glue logic:
– improved density relative to discrete SSI/MSI components (within 

around 10x of custom ICs)
– with the aid of computer aided design (CAD) tools circuits could be 

implemented in a short amount of time (no physical layout process, no 
mask making, no IC manufacturing), relative to ASICs.

• lowers NREs
• shortens TTM

• Because of Moore’s law, the density (gates/area) of FPGAs 
continued to grow through 00’s to the point where major data 
processing functions can be implemented on a single FPGA.
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Why FPGAs?
• FPGAs continue to compete with custom ICs for special processing 

functions (and glue logic) but now also compete with microprocessors 
in dedicated and embedded applications.
– Performance advantage over microprocessors because circuits can be 

customized for the task at hand.  Microprocessors must provide special 
functions in software (many cycles).

• Summary:

ASIC = custom IC, MICRO = microprocessor
• Newer FPGAs even combine microprocessor cores, special multiplier 

circuits, memory blocks, and configurable logic on a single chip.

performance NREs
Unit
cost TTM

ASIC ASIC ASIC
FPGA

MICRO
FPGA

MICRO
FPGA

MICRO

FPGA

ASIC
MICRO
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Summary
• Logic design process influenced by available technology 

AND economic drivers
– Volume, Time to Market, Costs, Power

• FPGA offer a valuable new sweet spot
– Low TTM, medium cost, tremendous flexibility (during and after 

design is done - field upgrades are possible).

• Fundamentally tied to powerful CAD tools
• Build everything (simple or complex) from one set of 

building blocks
– LUTs + FF + routing + storage + IOs


