Conditioned probability

Intuition

» Time/Actions change the sample space.
P(2)=11/36

H[=HNRE

o
Ei

P(2/Second die is 1)=1/36 P(2/Second die is 3)=1/36 2

Intuition
» Time/Actions change the sample space.
P(k)=0.0084

P(kly)=0
P(k/a)=0.001

3

Intuition
» Time/Actions change the sample space.

P(W)=TotalArea=1

P(A) = Areaof A A
P(C) = AreaofC
P(C/B):AreaOfC
Areaof B
(

P(B/C) = Areaof C

Formal definition

* Prob. of A conditioned to B is defined as

p(a/B)=ACB) ﬁ((é)B)

_ Countof ways foraresult
Countofallpossibleresults

An Example: The sister problem

* You knock at the door of a family with two
children, and a girl opens the door.

» Which is the probability that the other child

isaboy?  w={(B,B)(G,B).(B,G),(G,G}
— A={one child is boy}
— B={one child is girl}

220
p(a/B) = PACE) _&4a_2
P(B) a8o 3
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An Example: The sister problem
Possible solutions

Col,

There is only one house,
and you knock the door

w, ={{G, B},{G.G}}
P(A/B)=1/2

d

Noi lapsed

There are 4 houses, you
choose one and knock the
door

W, ={(B,B,).(G., B,).(B,. G,) (G,,G, }
P(A/B)=2/3

The sister problem
Possible Worlds

Logic:

Kripke In "Semantical Considerations on Modal Logic", published in
1963, Kripke responded to a difficulty with classical quantification
theory. The motivation for the world-relative approach was to represent
the possibility that objects in one world may fail to exist in another. If
standard quantifier rules are used, however, every term must refer to
something that exists in all the possible worlds. This seems
incompatible with our ordinary practice of using terms to refer to things
that only exist contingently.

http//len wikipedia org/wiki/Passible warld

An Example: The prisoner’s dilema
(in prob. different from the game theory)

« Three prisoners A,B,C. One is going to be released, but
they do not know the who.

« Prisoner A asks the guard the identity of one prisoner
other than himself who_will not be released.

« Guard:"your prob. of being released is now 1/3. If | tell
you B, say, will not be released, then you would be one
of only two prisoners whos fate is unknown and your
probability of release would increase to %2 Since | don't
want to hurt the chances of the other to be released | am
not going to tell you”

— Where is the mistake in the reasoning?

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms

An Example: The prisoner’s dilema
(in prob. different from the game theory)

» Sample space W:{{A},{B},{C}}

Initial Statement: P(release A)=1/3

» The guard seems to be saying:

— P(release A/guard says B released)=1/2

Either the voice of the guard can change
probabilities or there is a different implicit
sample space or independence assumption.

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 10

An Example: The prisoner’s dilema
(in prob. different from the game theory)

 If we incorporate the event E={guard says B is
released”}, the new sampling space is:
— O,={A, guard says B is released}
— O,={A, guard says C is released}
- 0,={B, guard says C is released}
- 0,={C, guard says B is released}

0

ot I T
—

8? {c} —1/3

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 1

An Example: The prisoner’s dilema
(in prob. different from the game theory)
« With:
— E.={Ais released}
— E,={guard says B is released}
P(E,CE,) _ P(O)) _ e _
P(E,) P(@)+P(,) 16+1/3

P(E/E)=

O~ >
O,={A, guard says B is released} A 1/3
A g ys B O/V { }

0O,={A, guard says C is released}

0,={B, guard says C is released}
0O,={C, guard says B is released}

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms

02/' {8} —1/3

Cy —1/3
rec

12




An Example: The prisoner’s dilema
(in prob. different from the game theory)
» Chance tree/Decision tree

Judge decides Guard says Final prob.

1/2—»B free
V3= Afree<s1/5—C free—HU6

O—»1/3— B free—» 1—» C free—»1/3
1/3— C free—» 1—>» B free—»1/3

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 13

Asumptions on {O,, O,, O;, O,}

» Asumption that the original events have
equal probability

Model
describing
the Real

World

g‘:; {a} >us
02 {8} >3
0.-¥ {} »us

PO)

)=y
P(0)+P(0,)

14

An Example: The prisoner’s dilema
(in prob. different from the game theory)
« What would happen if:

O,={A, guard says B is released}
O,={A, guard says C is released}
0O,={B, guard says B is released}
O,={C, guard says B is released}

— E,;={Ais released}
— E,={guard says B is released}

P 1E) = PECE) PO o ue __

= =1/5
P(E,) PO)+P(O,)+P©,) 1/6+1/3+13

O~
o {AA 13

', {8 »u3
°_w {c} »us
04

*Mathematical correct
eIndependence assumption?

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 5

An Example: The Monty Hall dilema

* The contenstant in a television show must choose
between three doors. An expensive car is behind one
door and gag prizes await behind the other two.

« The contestant must pick one of the doors randomly.

* The host opens one of the ther two doors concealing one
of the gag prizes.

* The contestant is asked whether he wishes to switch to

the remaining door.

Is the prob. of winning increased by changing

the choosen door?

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 16

An Example: The Monty Hall dilema

Select randomly a
door

17

An Example: The Monty Hall dilema

* Wrong argument:

— It makes no difference whether the player
switched doors or not. Each of the two
remaining unopened doors had a Y2 prob. of
concealing the automobile.

— If it is not in the opened door, it is behind
either, so therefore the prob. is of %2

« Caveat is it really random?, Note that the host has
choosen with knowledge.

« |s the the same sample space?

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 18




An Example: The Monty Hall dilema
» Chance tree/Decision tree

The car is behind host opens Final prob.

1/2—>»door 2—»1/6

s
hoosds 1/3=* doorl=s 1/2—» door3—>1/6
—» 1/3—> door2—» 1 —»door3—»1/3

™ 1/3—> door3—> 1 —>door 2—>1/3

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 19

An Example: The Monty Hall dilema

* Probabilities

The car is behind host opens Final prob.
1/ 2—»door 2
hoo ) 1/3_> doorld v door3 @ Doesnot change 1/3
door — 1/ 3 door2—» 1 —-door Changesthedoor2/3
1/3™ door3— 1 —»door2

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 20

An Example: The Monty Hall dilema

* Note that conditioning changes the sample

space W, ={ (door 1),(door 3)}

W,,, ={ (door),(door 2), (door 3} W, ={ (door1),(door 2)}
W, ={(door 2),(door 3)}
W, ={(door 3),(door 2)}

The car is behind host opens Final

prob. 1/2—%door
P
~ 13> doorl-p:u door 5 Does not change 1/ 3
door = 1/3—% door 2—» 1 —» door Changes the door2/ 3
A 173 door3—» 1 —Pdoor

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 21

An Example: The Monty Hall dilema

* Note that conditioning changes the sample
space

Wy ={(doorl),(door 2),(door 3)} ——» P(door1) =1/3

W, ={(door 1), (door 3)}
W, ={(door 1), (door 2)}
W, ={(door 2), (door 3)}
W, ={(door 3), (door 2)}

The car is behind st opens Final prob
WP 3
P o 1L 4@ o chge 113
‘ms 139> door 2P 1 P Goor I—PFIT S e the oo 2173
/39> door 3= 1 =P door

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 22

P(door 2/not change) =1/ 3
P(New door/ change) =2/ 3

Computation of intersecion
probability
« Temporal structure: B takes place and
afterwards A

P(A/B) =%® P(AC B) = P(B)P(A/ B)

» Generalization for a sample space

W={A, A, A}
P(ACAC-CA)

Computation of intersecion
probability

¢ Generalization for a sample space

W={A, A, A}

P(AGAC-CA)=P(AGC(AC-GCA)=
=P(A)PE&G~CAYA)

v
NN
P(ACB) =P(A)P(B/ A)

24




Computation of intersecion
probability
« Generalization for a sample space
W={A, A, A}
P(AC(AC

P(AC(A-CA)A)=
=P(AIA)P(AC-CATACA)

25

Computation of intersecion
probability

« Generalization for a sample space
W={A,A,--A}

P(ACAGC-CA)=
=P(A)P(ATA)P(ATACA)--P(ATAC—-CA,,)

26

Computation of intersecion
probability

« Examples

— Birthday problem
1Ali=1.n; s
SamplespaceW:% the dayof thebirthdayof individud-th;',
¥whichi sdifferent fromall theothers. b

Probability of Event={A GA,G---GA}

ii

Probability of thesimultaneous ocurrence
of theatomic events A i =1,---n

P(A, / A)® Probabilityof thebirthdayin day

A, when theday A is occupied -

Computation of intersecion

probability
* Examples
— Birthday problem
P(ACA,C-CA)=
=P(A)P(AIA)P(ALIACA)-P(AIAC-CA)
VAN J

P_ad\lt}aé\l-lcraé\l—Z('j aaN- n+1p
r=¢—=¢ hY :
eNe N@ N ge N g

28

Computation of intersecion
probability

« Examples:Grammars for computing the
probability of a correct sentence

PW,CW, G- Gw,) =
= P(W)P(W, /Wy) P(Ws / W C W)+ P(W, /W G -+ C W, )
= P(V\Q)P(WZIWD P(V\é/V\é C Wz)P(W4/ W, ¢ V\é)“'P(Wn/Ww 2 ¢ Wnrl)

To be, or not to be—that is the question;
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous
fortune,

Or to take arms against a sea of troubles,
And by opposing end them? To die, to

sleep
Microsoft® Encarta® 29

Example

« We can connect to two servers:
— S1 has 2 high speed links and 1 slow link
— S2 has 1 high speed link and 3 slow links

» We select one server at random

» Which is the probability of getting a slow

link?.
Ca

LY




Example
» Sample space:
W={SFs,S3w,S,F4,S,Sw}
— Event: Select Server and then type of link
2/3—> HghSpeed

Chooses\.w /2% § > 53_' LOVr\:SpeeC(ij‘—
4—» HghSpee!
Server v2>s g
=% 3/ 4> LowSpeed<«—

e a2
Prob=1/2*1/3+1/2*3/4=13/24 % 1
31

Example
* Probabilities:
P(S)=P($)=1/2

o g

P(EW/S) == P(i\g)g)

P(Sw) = P(%)P(SW/SZ) +P(S)P(SwW/ )

32

Example

* Probabilities: Another way

P(Sw) =P((SwC S)E (SWwC S,))
P(Aw) =P(SwC S) +P(SwWC S,)

P(Sw) =P(S,)P(Sw/ S) + P(S)P(Sw/ §)

Properties

S={A A A}

P(AEAE--EAI/B)=
_P(ACB)E(ACBEE(ACB)

P(B)
@ e _P(ACB)+P(ACB)+-+P(A CB)
33 34
Properties Properties

» The universe conditioned to a given event
has prob. one:
P(WCB) _

PW/B)=—55

» Both prob. spaces will have the same
properties

(w, P(./B)) (B,P(/B))

 Total probabilities:
— Given a set of events S={B,,B,,---B }
pairwise disjoint or mutually disjoint! , such that

BEB,E---EB =W
— We have:

P(A) =P(BYP(A/ B) +P(B,) P(A/ B;) +--- + P(B,)P(A/ By)

1- MutuallyDisjoint: for all (i, j)such that i * j
BGB, =0 36




Properties

« Total probabilities:
— Proof:
A=AGCW=AG (B,EB,E --EB,)=
=(ACB)E(ACB,)E--E(ACB,)
P(A)=P(ACB)E P(ACB,)E--E P(AC B,)
P(A) =P(AC B)+P(ACB,) +---+P(ACB,)
but P(ACB)=P(B)P(A/B)
P(A) =P(B)P(A/B) +P(B,) P(A/B,)+--- + P(B,)P(A/B)

37

Properties

 Total probabilities:
— Temporal/Spacial interpretation

P(A) =P(B)P(A/B,) +P(B,) P(A/B,) +--+ P(B,)P(A/B,)
— When B; happens, the odds of A change

P(B) — P(A/B)ii
Pt P(B,) —» P(A/B,)|

A\ L

P(B,) — P(A/B,)h

Example

« A Clinical analysis is used for the diagnosis of
three iliness, B4,B,,B,.

» The proportion of people with a given illness is:
3%,2%,1%

* The analysis gives B,® 85% i
possitive result for: B,® 92%1
B,® 78%7

B,® 0.5%,

« Compute the prob. of a possitive.

39

Example

» We define prob. of a possitive as P(A)

P(A) =P(B)P(A/B)+P(8,)P(A/ B,) + P(B,)P(A/ B)) +P(By) P(A/ B)
=0.03*0.85+0.02" 092+ 0.01* 0.78+0.94* 0.005=0.0564

* 5,6% instead of 6% not bad ©
* What would happen with P(A/B;)=0.1 ?

Example
» What would happen with P(A/B)=0.1?

P(A) = P(B,)P(A/B,)+ P(B,) P(A/ B,) +P(B,)P(A/B;) +P(B;)P(A/B,)
=0.03*0.85+0.02*0.92+0.01* 0.78+0.94* 0.1= 0.146

10% of the
non-affected

a1

Bayes’'s formula

* Intuitively not clear (?)
P(B)P(A/B)
P(BJP(A/B) + P(B,)P(A/ B)++ P(B,)P(A/ B,)
» Context:
— Solution to a problem of “inverse probability" was presented in the
Essay Towards Solving a Problem in the Doctrine of Chances
— Published Divine Benevolence, or an Attempt to Prove That the
Principal End of the Divine Providence and Government is the
Happiness of His Creatures (?)
— End is synomim of purpose, aim.
Observation:
Happines of His Creatures

P(B/A=

Purpose of the
Qivine Providencg

42




Kinds of probability

« Probability of an observation
* Probability of the cause of the observation
Probability of the estimate of the probability.

fo(P)

pm' = Pgvhite observationéomposition oftheurn)

p
P,.,(compositionoftheur n/ whiteobservation)

Bayes Formula

» Motivation:

—We would like the probability of the causes
that generate the observations.

— Update our knowledge after the observations.

P(Urn with nwhite and m black)
?

Py, (composition oftheur n/Giventhe observation)

Pres = P(A given observati on/ compositionoftheurn)

Bayes Formula
¢ Context of the Bayes formula:
— Kant's knowledge theory

P(Urn withowhite and mblack)

Senses are
composed of:

A priori forms,
are Believes on
the composition
(i.e. n white and
black)

'\/h Peompositionoftheurn/ ~
Transformation ¢ i D A _
Urn: of the a priori —> Given the observation r_ ) Transformation of P, (Observation) =
3 White bservaton knowledge by um: M L”ﬂz;gg:'; wire P functior(Apriori knowledge,Observation)
7 Black the observation 3 White bservtior sheervaton
7 Black S
. L
Gives form to the 45 . 46
. . _ . knowledge p’ = P@hiteobservationcompositionoftheurn)
p’ = Piwhiteobservationcompositionoftheurn)

Bayes Formula

« Laplace proposes taking into account the
probability of the probability:

P(Urn with ite and m black)

Senses are
composed of:

A priori forms,

httplen wikipedia.orghvikilLaplace

Bayes’ formula
» Bayes’ formula:
—Given a set of events S={B,,B,,---B}
pairwise disjoint or mutually disjoint! , such that
B EBE--EB =W
—We have: P(B/A)= PECA)_P(B)P(A/B)
P(A P(A)

P(B)P(A/B)

PO B E)R(ATE) + P(B,IP(A/ B+ F(B)P(ATE)

1-Mutually Digoint :for al (i, j) such thatd' 1j
BCB =0

Bayes’'s formula

e Context:

— Bayes defines probability as follows :
« The probability of any event is the ratio between the value at
which an expectation depending on the happening of the

event ought to be computed, and the chance of the thing
expected upon it's happening

Expectation
depending on the
happening

Chance of the thing expected
upon it's happening /
P(B/A) = \ (B) P(A/B
)PCA/B)+ P(B))P(A/B) +-++P(B,) P(AT




Bayes's formula

« Expectation

— 1. anticipation of something happening: a confident
belief or strong hope that a particular event will happen

— 2. notion of something: a mental image of something
expected, often compared to its reality (often used in the
plural)

— 3. expected standard: a standard of conduct or
performance expected by or of somebody (often used in
the plural)

— Microsoft® Encarta® Reference Library 2003. © 1993-
2002 Microsoft Corporation. All rights reserved.

49

Bayes’s formula G
and Utility function
* |dea of utility

— Expectation is a subjective concept.

— Instead of the probabilistic expectation, we could think in the
‘moral expectation’
Moral expectation

Value—4 Chance of the thing x depending on the
happening

valugB /A) p P(B) Utility(A/B)

Bayes’s formula -
and Utility function

¢ Usefullness of the Idea of utility
— People behave as if they were maximizing an Utility function, i.e, a
‘moral expectation’
— Objects generated by the independent and free actions can be
understood by means of the utility theory.

- Bxample:  Valug(B / A) u P(B,) Utility(A/B)

51

Application to the clinical analysis
problem

 Probability of having the illness given a
possitive result A).

P(B)P(A/B) _ 003085 _

P(a/A):T-W-OAsz ﬁﬁﬁ
P(B,/ A= —P(BZLF(’(A/;‘/ B) . % =0326

o,y = HEIPAIB) Q00T 1 w
P11y = HEIPAVE) 008008 o

52

Application to the clinical analysis
problem

* Probability of having the illness given a

possitive result (A). 003 085 00564
* Meaning: P(B,CA) 003085

Ry BT
P(B,/A® 45% G%
P(B,/ A) ® 32%

P(B,/ A ® 13% W
P(B,/ A® 83% Fasepositive

Bayes and chance trees

e Urn has 5 white balls and 3 black. One ball
is taken randomly and introduced in
another with 2 white and 1 black.

* A ball white is taken from the second urn.

» What is the probability that the first ball
was black?. ®
C

(Wi
D,




Bayes and chance trees

Urn has 5 white balls and 3 black. One ball is taken randomly and introduced in
another with 2 white and 1 black.

Aball white is taken from the second urn.

What is the probability that the first ball was black? .

Bayes and chance trees

What is the probability that the first ball was black?.

C ) @
@O
|

) DZ‘\‘{Q}

P(B)P(W,/B,) _ 3/8*1/2
P(B)PW,/ B)+PMW,)PW, /W,) 3/8*1/2+5/8*3/4
56

P(B,/W,) =

P(A/B) t P(B/A)

» Speaks spanish/spanish citzenship

40million_
40million
40million _4
500million™ 5

P(speaksspani sh/sanish citzenship=
P(spanishcitzenshifspeak sspanish =

» Kasparov/winning in chess

1
1000million
P(winningnchess/Kasgroy) =1

P(K asparov/winingnchesg =

* A more difficult one: OJ Simpson:
— P( being killed /a beating husband)
— P(abeating husband / being killed)

Bayes and "the prosecutor's
fallacy".

*The prosecutor's fallacy

*The prosecutor's fallacy is the assertion that, because the stor y
before the court is highly improbable, the defendant's innocenceis
equally improbable.

*0J Simpson:

«Prob. Having a beating husband given that a woman has been
killed->1/10.000

+*Many more causes of death: accidents,age,illness, husband,etc
*Prob. of being killed given a beating husband->1/100

«If we exclude other causes, the conclusion

57 58
P(cancer/positive test) * P(cancer/positive test) 1
P(positive test/cancer) P(positive test/cancer)
« Problem of concept: « Diagnosis problem: P( cancer/positive)
— P(cancer/positive) ->Atribute of the pacient _ We know:
— P(positive/cancer) ->Atribute of the test. + Clinical study: P(positive test/cancer)=0.9
« \What we want to know: (either) « Statistics of the population: P(cancer)=10/1000
— Efectivness of the treatment given how the pacients fare ) 1C : Pacient isill of cancer
. . K K We define® o X
— Diagnosis of the pacient given the result of the test 1 P: Positiveresult in thetest
» Diagnosis problem: P( cancer/positive test 20
v . P ( P ) P(C/P)= PC)RP/C) S
— We know: P(C)P(P/C)+ C)P(P/C) 10 o) 990 -
— Clinical study: P(positive test/cancer)=0.9 1000 * 1000
— Statistics of the population: P(cancer)=10/1000 Note:
» Note: could be the people that go the hospital «90% vs. 8.3%
© *1% is increased to 8,3% I

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms




Game of Craps

 Dice game. The player throws two dice; if
the sumis 7 or 11 wins, if it is 2,3, or 12
loses. If it has another result, continues
until a 7 (loses) or the result of the first

throw (wins). /. Wins

OS> @
Note: the possibility f‘V/
of playing infinite time ¢.5,6,8,9,1) ——p wi
Ins

Taken from: Célculo de probabilidades I. R.Velez,V.Hernandez €,5.6.8,9,10 61

Game of Craps

« Justification of 28 slides for a problem:
— Indefinite duration
— Geometric series
— Conditioned probability and Bayes in different

ways. /. Wins

OS> @
¢.5.6,8,9,1) _>< >/
Note: the pc:sslb\hb\A Wins
of playing infinite time = &,5,6,8,9,10 62

Game of Craps

» Compute:
— Probability of winning
— Probability of getting a 5 in the first throw if it
is known that the player has won.
 Note: inverse probability, which is the cause.

— The probability that the player wins if there
have been k throws.

. Wins
N D
@8
‘ Wins ”

Game of Craps

 Probability of winning :

U 236 I 436 5 G656 436 43 26 136

i = 1=, 22
Wins —p  P(G,/X =7 ORX =1} =5 +=x==
> QoD

2
4 N /v
Ge2d—0
\ Wins-> Does not gets a 7 and
D E— D — repeats the first result
P(Gy) P(G,) *

Game of Craps

* Probability of winning :

2 3 4 5 e 7 8 9 10 u 1

13 23 3% 4% 5% 636 596 43 ¥ 2% 136

p=P(X=4)
g=P(X ={NOT 7NOR4)

PG,/ X =4)=p+q'p+gfp+q’p+q‘p-
> Gaod
8¢
4,5,6,8,9,1) —p

\ Wins-> Does not gets a 7 and

P(G,) repeats the first result .

Geometric Series

Game of Craps

¢ How do we sum an infinite geometric

ies?
Seress s= P+qlp+q2p+q3p+q4p"‘:1-_pq

.

66




Game of Craps

» How do we sum an infinite geometric

ies?
series?  o_ p+q1p+q2p+q3p+q‘p'~=1i

SR q

Game of Craps

* How do we sum an finite geometric

e .
Seres: S=p+q1p+q2p+q3p~~+q“'1p:Pll qq

)

kgtract [~

67 68
Game of Craps Game of Craps
» How do we sum an finite geometric * We can sum p(G,/X =4)
series?
_ Analitical Solution e e i e e e e e
S=1+qg'+g*+q’+g"? p:P(x:4):3\A\
S:l+q1+q2+q3m+qN-1+(qN_ qN) 36 -
q=P(X ={NOT 7NOR4) ==—
S=1+ q1(1+q1+q2+q3-»-+qN'1)- q" 36
a3 1 1
S=1+qS- gV @ u P(GQIX_4)_pﬁ_361_-£_§
g=1-a q' O\i@r 2 %
L q e, P
® G I TR e vt i

Game of Craps

° The Othel’ cases -——2—4 5 & 1 8 5 w0 u v

136 23 3% 436 596 695 596 436 3% 23 U

p=P(X =5) :i
36 26 Note that by symetry:
a=P(X ={NOT 7NORS) =Z=
141 2 P(G,/ X =4)=P(G,/ X =10)
PG, /X=5=p—=m—z=2 /X =5)= /X =
1q 36, 26 5 P(G,/ X =5)=P(G,/ X =9)
36 P(G,/X=6)=P(G,/ X =8)

5
= P(X =6) ==
p=R ) %

25

a=P(X ={NOT 7NORe}) =22

1 5 1 5
1-q 36, 25 11
36 7

PG, /X=6=p

Game of Craps

« Finally the probability of winning is:

P(G) =P(G,/ X = 7OR11) +P(G,/ X = 40R50R60R8OR 9OR10)

PG =2+3L, 42,55, 42 31 93

9 363 365 3611 365 363
Wins

@
B

4,5,6,8,9,1) ——p

\ Wins-> Does not gets a 7 and
5,6,8,9,1 i
P rEEe— repeats the first result »

U 2 W3 A6 S96 686 96 46 I 2% 36




Game of Craps

« Finally the probability of winning is:
— Note that we have used the total probability

2,31, .42 55 42 31
P(G) ==+ ——+—= - 4
(©)=5"363" 365 3611 365 363 2*°°

TotalProbability

P(A)=P(B,)P(A/B,)+ P(B,)P(A/ B,) +---+P(B,)P(A/ B,
D

O—Gaor
N O

\A (5689 oWins-> Does not gets a 7 and 73
repeats the first result

Game of Craps

— Probability of getting a 5 in the first throwif it
is known that the player has won.
* Note: inverse probability, which is the cause?.

42
x=g1g -PAX=9PE/X=5) 365 _ 11

P@G) 70493 122
Observation:
Has Won
fV
,5,6,8,9, —>
74
,5,6,8,9,

Game of Craps

* The probability that the player wins if there
have been k throws.

« The condition is that the player wins and at
least there have been N>k rounds: P(G /N > k})

— Note: that the temporal structure depends on
getting in the first throw one element of the

set={4,5,6,8,9,10} 1PN >k/X=4)
:.P(N >k/X =5

{P(N >k/ X =6)

P(GAN > k}) —» [N =K/ X =)

PN >k/X =9

TP(N >k/ X =10

Game of Craps

» The probability that the player wins if there
have been k throws.
e Case: P(N>k/X=4)
— Note: the condition for playing N>k rounds
given that the first sum was 4 is:

{Getad} AND{NOT 7 NOR4} AND--- AND{NOT 7 NOR4 AND{after anythingelse}
k - 1times

P(X =4)P(X ={NOT 7 NOR4})"*

P(N>k/ X =4)= =2

P(anythinglsg
76

Game of Craps

» The probability that the player wins if there
have been k throws.

P(X =4)P(X ={NOT 7 NOR4})**
P(X=4)

P(N>k/X=4)= P(anythinglsg
P(X ={NOT 7NOR4}):%

P(N>k/X =4) =(§—;)“= P(N >k /X =10)

2 3 4 5 6 7 8 9 10 u 1
U 2% 36 43 536 6G6 566 4% 366 236 U

Game of Craps

» The probability that the player wins if there
have been k throws.
— For the rest of the set={4,5,6,8,9,10}

P(N>k/x=4)=(ﬁ)k'1=P(N>k/x=10)
P(N>k/X =5)= ( )“—P(N>k/X =9)

P(N>k/X =6) = ( )“—P(N>k/X 8)

23 4 5 6 7 8 9 10 1 12

136 36 3 436 536 636 536 436 3% 2% 136

78




Game of Craps

» The probability that the player wins if there
have been k throws.
— We will compute the probabity of N>k which
we will need for conditioning.
P(N >k) = (P(X = 9PN >k/ X =4)+ P(X =5)P(N > k/ X =5) +P(X =6)P(N > k/X =6))*2
622707, 82260, 102258 f

P(N >k)= : : :
(N> =35536, 365365 365365

Symetry of the prob. of
the set={4,5,6,8,9,10}

2 3 4 5 6 7 8 9 10 1 12

136 236 3 436 536 636 53 43 3% 236 136
79

Game of Craps

» The probability that the player wins if there
have been k throws.

{N>K ¢ Ggiventhat{X =4 E{x =17
For i =k +1toinfinite happenitherof thefollowingevents
{Geta4 OR10}AND{NOT 7NOR(4,10} AND--- AND{NOT 7NOR(4,10} AND{wir}
i- 2times
i3k+1

P(N>Hoox=dE{x=10) § S

Game of Craps

» The probability that the player wins if there
have been k throws.

For i =k +1 toinfinitehappenseither of thefollowingvents

{Geta4 OR1G}AND{NOT 7 NOR (4,10} AND--- AND{NOT 7 NOR (4,10} AND{wir}
i- 2times
is k+1

-3 679’
PN >K ¢ G/{X = 4}E {x =10} = . ﬂzeg

eometriSeries

3 45 6 7 s 9 10 u_ 1

81

Lao 2o a3e 3o sme wne s e oo 2se oo

Game of Craps

* Sum of the geometric series

6 % @767 _ 63278 _62707% @70
362,636 ¢ e 36%8362, “368365 3 &36
_62707 1 _ 678" 36 _1a27"
=—&—= =
36&36g 1. 21 27 36836y 36- 27 3é36g
36
Criterion for selecting the change of variables: p
Transform the original sum into the known one S = pa q” =

n=0 1q

82

Game of Craps

» The probability that the player wins if there
have been k throws.

¥ 32278 _1a278"
N>k CGAX =4 X =10) = g = == =4
PAN>QoaAx =afE{x =10) = g S=es =Se
¥ 4 6.1'2 4 6.,1(-1
PN >K C G/ E{x=9)= 3 =2 0
n>keehx=geix=9) 2 36¢36y  10836p
y -2 k-1
PAN >R CGAX =6lE {x=g)= § =Z59 52250
N >KCGA JE{x=8) ‘QHSGe%z lle%ﬂ

2 3 4 5 6 7 8 9 10 1 1

M3 236 M 436 S0 66 6E6 436 W 2 U
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Game of Craps

» The probability that the player wins if there
have been k throws.

6 12276, 8 42260, 105 a®50"
N>k =————+ +——(—F +— =

PN>KC o) 363936, 36103365  3611436p

Totalprobabiliy

P(A) = P(B)P(A/ B)+P(B,)P(A/B,) +P(B,)P(A/B,)

PAN>K GG X =4 E{x =10)

PAN>K GG X =5 E{x =9}

PAN>K GG X =6 E{x =8})

2 3 4 5 6 7 8 o 1 1 1

A o6 W a6 56 636 66 46 W3 2 36
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Game of Craps

» The probability that the player wins if there
have been k throws.
— Final Probability

pai{n>kp=LAN>KCO)
P(N>K)
612275 8 44269 105256
B m?a—e; +3610§%¢ +Eﬁ§?€{3
5278, 82638 10a050
36536y 365365 363364

Game of Craps

» The probability that the player wins if there
have been k throws.
— What happens when k->infinite

Vot Jos Jon 6 170
10000 | 10000 ﬁg %+ 1
o000 | osono P(G/{N > k}) @228098 a-

08100 | 06400

Sare” 3

oo | oo —
ey v [ T
04783 02097 0,6000-

04305 | 01678 04000

0200
oze7a | 0132

o

10| ozer | osora ISR Y

11| 03138 | o080 Value of k
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Bayes and "the prosecutor's
fallacy".

* The prosecutor's fallacy

— The prosecutor's fallacy is the assertion that, because the story before the court

is highly improbable, the defendant's innocence is equally improbable.
« OJ Simpson:

— The chance that a random sample of DNA would match that of O.J. Simpson
was put at one in 4m. Long odds: but, as Johnnie Cochran, Mr Simpson's
counsel, explained to the jury, there are 20m people in the Los Angeles area. Mr
Simpson was therefore one of several people whose blood might be matched to
the scene and he could not be guilty beyond reasonable doubt.

P(Guilty) (DNA Matched Guilty)
P(Guilty)P(DNA Matched Guilty) + P{ Not Guilty)P(DNA Matches/ Not Guilty)

P(DNAMaches )P(DNA Matches / Gilty)

P(Guilty/ DNA Matched =

PN M G Iy ) = Niaces )Gy / DNAGON' Meth ) + P(DNAGoN Tt )P(GUIty/DNA dont Nan )

What is the chance of your being guilty? 87
Financial Times 19 June 2003

— Probability of getting a 5 in the first throw if it
is known that the player has won.

« Note: inverse probability, which is the cause.

Observation:
Has Won

f,(P)
Pres = P@hite observationéomposition oftheurn)

P,.,(compositionoftheur n/ whiteobservation)
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