Conditioned probability

\square

Intuition

- Time/Actions change the sample space.

3

Formal definition

- Prob. of A conditioned to B is defined as

$$
\begin{gathered}
P(A / B)=\frac{P(A \cap B)}{P(B)} \\
\operatorname{Pr}=\frac{\text { Countof ways foraresult }}{\text { Countofallpossibleresults }}
\end{gathered}
$$

Intuition

- Time/Actions change the sample space.

Intuition

- Time/Actions change the sample space.
$\mathrm{P}(\Omega)=$ TotalArea $=1$
$\mathrm{P}(A)=$ Areaof A
$\mathrm{P}(C)=A$ reaof C
$\mathrm{P}(C / B)=\frac{\text { Areaof } C}{\text { Areaof } B}$

$\mathrm{P}(B / C)=$ Areaof C

An Example: The sister problem

- You knock at the door of a family with two children, and a girl opens the door.
- Which is the probability that the other child is a boy? $\quad \Omega=\{(B, B),(G, B),(B, G),(G, G)\}$
- $\mathrm{A}=\{$ one child is boy $\}$
- $\mathrm{B}=\{$ one child is girl\}

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{\left(\frac{2}{4}\right)}{\left(\frac{3}{4}\right)}=\frac{2}{3} \text { Sure? }
$$

An Example: The prisoner's dilema (in prob. different from the game theory)

- Three prisoners A,B,C. One is going to be released, but they do not know the who.
- Prisoner A asks the guard the identity of one prisoner other than himself who will not be released.
- Guard:" your prob. of being released is now $1 / 3$. If I tell you B, say, will not be released, then you would be one of only two prisoners whos fate is unknown and your probability of release would increase to $1 / 2$ Since I don't want to hurt the chances of the other to be released I am not going to tell you"
- Where is the mistake in the reasoning?

An Example: The prisoner's dilema

(in prob. different from the game theory)

- If we incorporate the event $E=\{$ guard says B is released"\}, the new sampling space is:
$-O_{1}=\{A$, guard says B is released $\}$
$-\mathrm{O}_{2}=\{\mathrm{A}$, guard says C is released $\}$
$-O_{3}=\{B$, guard says C is released $\}$
$-\mathrm{O}_{4}=\{\mathrm{C}$, guard says B is released $\}$

$$
\begin{aligned}
& \begin{array}{l}
O_{1} \longrightarrow
\end{array}\{A\} \rightarrow 1 / 3 \\
& O_{2} \longrightarrow\{B\} \rightarrow 1 / 3 \\
& O_{3} \longrightarrow\{C\} \longrightarrow 1 / 3 \\
& O_{4} \longrightarrow
\end{aligned}
$$

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms

The sister problem Possible Worlds

Logic:

Kripke In "Semantical Considerations on Modal Logic", published in 1963, Kripke responded to a difficulty with classical quantification theory. The motivation for the world-relative approach was to represent the possibility that objects in one world may fail to exist in another. If standard quantifier rules are used, however, every term must refer to something that exists in all the possible worlds. This seems incompatible with our ordinary practice of using terms to refer to things that only exist contingently.
http://en.wikipedia.org/wiki/Possible worlds

An Example: The prisoner's dilema (in prob. different from the game theory)

- Sample space $\Omega=\{\{A\},\{B\},\{C\}\}$
- Initial Statement: $\mathrm{P}($ release $A)=1 / 3$
- The guard seems to be saying: $-P$ (release A/guard says B released) $=1 / 2$
- Either the voice of the guard can change probabilities or there is a different implicit sample space or independence assumption.

An Example: The prisoner's dilema

 (in prob. different from the game theory)- With:
$-E_{1}=\{A$ is released $\}$
$-E_{2}=\{$ guard says B is released $\}$
$P\left(E_{1} / E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}=\frac{P\left(O_{1}\right)}{P\left(O_{1}\right)+P\left(O_{4}\right)}=\frac{1 / 6}{1 / 6+1 / 3}=1 / 3$

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 12

An Example: The prisoner's dilema

(in prob. different from the game theory)

- Chance tree/Decision tree

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 13

Asumptions on $\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}\right\}$

- Asumption that the original events have equal probability

An Example: The Monty Hall dilema

- The contenstant in a television show must choose between three doors. An expensive car is behind one door and gag prizes await behind the other two.
- The contestant must pick one of the doors randomly.
- The host opens one of the ther two doors concealing one of the gag prizes.
- The contestant is asked whether he wishes to switch to the remaining door.
- Is the prob. of winning increased by changing the choosen door?

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms

An Example: The Monty Hall dilema

An Example: The Monty Hall dilema

- Wrong argument:
- It makes no difference whether the player switched doors or not. Each of the two remaining unopened doors had a $1 / 2$ prob. of concealing the automobile.
- If it is not in the opened door, it is behind either, so therefore the prob. is of $1 / 2$
- Caveat is it really random?, Note that the host has choosen with knowledge.
- Is the the same sample space?

An Example: The Monty Hall dilema

- Chance tree/Decision tree

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 19

- Note that conditioning changes the sample

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms

Computation of intersecion probability

- Temporal structure: B takes place and afterwards A

$$
P(A / B)=\frac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B)=P(B) P(A / B)
$$

- Generalization for a sample space

$$
\begin{aligned}
& \Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\} \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)
\end{aligned}
$$

An Example: The Monty Hall dilema

- Probabilities

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 20
20

An Example: The Monty Hall dilema

- Note that conditioning changes the sample space
$\Omega_{\text {orig }}=\{($ door 1$),($ door 2$),($ door 3$)\} \longrightarrow P($ door 1$)=1 / 3$
$\Omega_{1}=\{($ door 1$),($ door 3$)\}$
$\Omega_{2}=\{($ door 1$),($ door 2$)\} \longrightarrow P($ door $1 /$ not change $)=1 / 3$
$\Omega_{3}=\{($ door 2$),($ door 3$)\}$
$P($ New door/ change $)=2 / 3$
$\Omega_{4}=\{($ door 3$),($ door 2$)\}$

Taken from: Understanding Prob. Chance rules in everyday life. H.Tijms 22 22

Computation of intersecion probability

- Generalization for a sample space
$\Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$
$P\left(A_{1} \cap\left(A_{2} \cap \cdots \cap A_{v}\right)\right)=$
$P\left(A_{1} \xlongequal[\left(A_{2} \cap \cdots \cap A_{n} / A_{1}\right)]{P\left(A_{2} \cap\left(A_{3} \cdots \cap A_{n}\right) / A_{1}\right)=}\right.$
$=$

$$
=P\left(A_{2} / A_{1}\right) P\left(A_{3} \cap \cdots \cap A_{n} / A_{1} \cap A_{2}\right)
$$

Computation of intersecion

 probability- Examples
- Birthday problem

Sample space $\Omega=\left\{\begin{array}{l}A_{i} / i=1 \ldots n ; \\ \text { the dayof the birthdayof individuail - th } \\ \text { whichis different from all theothers. }\end{array}\right\}$
Probabilit y of Event $=\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right\}$
\downarrow
Probabilit y of the simultaneous ocurrence
of the atomic events $A_{i} \quad i=1, \cdots n$
$P\left(A_{2} / A_{1}\right) \rightarrow$ Probability of the birthdayin day
A_{2} when theday A_{1} is occupied

Computation of intersecion probability

- Generalization for a sample space

$$
\begin{aligned}
& \quad \Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\} \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)= \\
& =P\left(A_{1}\right) P\left(A_{2} / A_{1}\right) P\left(A_{3} / A_{1} \cap A_{2}\right) \cdots P\left(A_{n} / A_{1} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

Computation of intersecion

probability

- Examples
- Birthday problem
$P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=$
$=P\left(A_{1}\right) P\left(A_{2} / A_{1}\right) P\left(A_{3} / A_{1} \cap A_{2}\right) \cdots P\left(A_{n} / A_{1} \cap \cdots \cap A_{n-1}\right)$
$\operatorname{Pr}=\left(\frac{N}{N}\right)\left(\frac{N-1}{N}\right)\left(\frac{N-2}{N}\right) \ldots\left(\frac{N-n+1}{N}\right)$

Computation of intersecion probability

- Examples:Grammars for computing the probability of a correct sentence

```
P(\mp@subsup{w}{1}{}\cap\mp@subsup{w}{2}{}\cap\cdots\cap\mp@subsup{w}{n}{})=
=P(\mp@subsup{w}{1}{})P(\mp@subsup{w}{2}{}/\mp@subsup{w}{1}{})P(\mp@subsup{w}{3}{}/\mp@subsup{w}{1}{}\cap\mp@subsup{w}{2}{})\cdotsP(\mp@subsup{w}{n}{}/\mp@subsup{w}{1}{}\cap\cdots\cap\mp@subsup{w}{n-1}{})
=P(\mp@subsup{w}{1}{})P(\mp@subsup{w}{2}{}/\mp@subsup{w}{1}{})P(\mp@subsup{w}{3}{}/\mp@subsup{w}{1}{}\cap\mp@subsup{w}{2}{})P(\mp@subsup{w}{4}{}/\mp@subsup{w}{2}{}\cap\mp@subsup{w}{3}{})\cdotsP(\mp@subsup{w}{n}{}/\mp@subsup{w}{n-2}{}\cap\mp@subsup{w}{n-1}{})

\section*{Example}
- We can connect to two servers:
- S1 has 2 high speed links and 1 slow link
- S2 has 1 high speed link and 3 slow links
- We select one server at random
- Which is the probability of getting a slow link?.


\section*{Example}
- Sample space:
\[
\Omega=\left\{S_{1} F s t, S_{1} S l w, S_{2} F s t, S_{2} S l w\right\}
\]
- Event: Select Server and then type of link


Prob \(=1 / 2^{*} 1 / 3+1 / 2^{*} 3 / 4=13 / 24\)


\section*{Example}
- Probabilities: Another way
\(P(S l w)=P\left(\left(S l w \cap S_{1}\right) \cup\left(S l w \cap S_{2}\right)\right)\)
\(P(S l w)=P\left(S l w \cap S_{1}\right)+P\left(S l w \cap S_{2}\right)\)
\(P(S l w)=P\left(S_{2}\right) P\left(S l w / S_{2}\right)+P\left(S_{1}\right) P\left(S l w / S_{1}\right)\)


\section*{Properties}
- The universe conditioned to a given event has prob. one:
\[
P(\Omega / B)=\frac{P(\Omega \cap B)}{P(B)}=1
\]
- Both prob. spaces will have the same properties
\[
(\Omega, P(. / B)) \quad(B, P(. / B))
\]

\section*{Example}
- Probabilities:
\[
\begin{aligned}
& P\left(S_{1}\right)=P\left(S_{2}\right)=1 / 2 \\
& P\left(S l w / S_{1}\right)=\frac{1}{3}=\frac{P\left(S l w \cap S_{1}\right)}{P\left(S_{1}\right)} \\
& P\left(S l w / S_{2}\right)=\frac{3}{4}=\frac{P\left(S l w \cap S_{2}\right)}{P\left(S_{2}\right)} \\
& P(S l w)=P\left(S_{2}\right) P\left(S l w / S_{2}\right)+P\left(S_{1}\right) P\left(S l w / S_{1}\right)
\end{aligned}
\]

\section*{Properties}
- If we have a set of disjoint events:
\[
S=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}
\]
\[
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n} / B\right)=
\]
\[
=\frac{P\left(\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup \cdots \cup\left(A_{n} \cap B\right)\right)}{P(B)}
\]

\[
=\frac{P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{n} \cap B\right)}{P(B)}
\]
\(=\frac{P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{n} \cap B\right)}{P(B)}\)

\section*{Properties}
- Total probabilities:
- Given a set of events \(S=\left\{B_{1}, B_{2}, \cdots B_{n}\right\}\) pairwise disjoint or mutually disjoint \({ }^{1}\), such that
- We have:
\(P(A)=P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+\cdots+P\left(B_{n}\right) P\left(A / B_{n}\right)\)
\[
\begin{aligned}
& 1-\text { MutuallyDisjoint: for all }(\mathrm{i}, \mathrm{j}) \text { such that } \mathrm{i} \neq \mathrm{j} \\
& B_{i} \cap B_{j}=0
\end{aligned}
\]

\section*{Properties}
- Total probabilities:
- Proof:
\(A=A \cap \Omega=A \cap\left(B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right)=\)
\(=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cap B_{n}\right)\)
\(P(A)=P\left(A \cap B_{1}\right) \cup P\left(A \cap B_{2}\right) \cup \cdots \cup P\left(A \cap B_{n}\right)\)
\(P(A)=P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cap B_{n}\right)\)
but \(\quad P\left(A \cap B_{i}\right)=P\left(B_{i}\right) P\left(A / B_{i}\right)\)
\(P(A)=P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+\cdots+P\left(B_{n}\right) P\left(A / B_{n}\right)\)

\section*{Example}
- A Clinical analysis is used for the diagnosis of three illness, \(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}\).
- The proportion of people with a given illness is: 3\%,2\%,1\%
- The analysis gives possitive result for:
\[
\left.\begin{array}{ll}
B_{1} \rightarrow & 85 \% \\
B_{2} \rightarrow & 92 \% \\
B_{3} \rightarrow & 78 \% \\
B_{0} \rightarrow & 0.5 \%
\end{array}\right\}
\]
- Compute the prob. of a possitive.

\section*{Example}
- What would happen with \(P\left(A / B_{0}\right)=0.1\) ?
\(P(A)=P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+P\left(B_{3}\right) P\left(A / B_{3}\right)+P\left(B_{0}\right) P\left(A / B_{0}\right)\) \(=0.03^{*} 0.85+0.02 * 0.92+0.01 * 0.78+0.94^{*} 0.1=0.146\)
- Why \(14.6 \%\) ? Only \(6 \%\) should give possitive!!!!!


\section*{Bayes's formula}
- Intuitively not clear (?)
\(P\left(B_{i} / A\right)=\frac{P\left(B_{i}\right) P\left(A / B_{i}\right)}{P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+\cdots+P\left(B_{n}\right) P\left(A / B_{n}\right)}\)
- Context:
- Solution to a problem of "inverse probability" was presented in the Essay Towards Solving a Problem in the Doctrine of Chances
- Published Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (?)
- End is synomim of purpose, aim.


\section*{Kinds of probability}
- Probability of an observation
- Probability of the cause of the observation
- Probability of the estimate of the probability.


\section*{Bayes Formula}
- Context of the Bayes formula:
- Kant's knowledge theory


\section*{Bayes' formula}
- Bayes' formula:
- Given a set of events \(S=\left\{B_{1}, B_{2}, \cdots B_{n}\right\}\)
pairwise disjoint or mutually disjoint \({ }^{1}\), such that
\(B_{1} \cup B_{2} \cup \cdots \cup B_{n}=\Omega\)
- We have: \(P\left(B_{i} / A\right)=\frac{P\left(B_{i} \cap A\right)}{P(A)}=\frac{P\left(B_{i}\right) P\left(A / B_{i}\right)}{P(A)}\)
\(P\left(B_{i} / A\right)=\frac{P\left(B_{i}\right) P\left(A / B_{i}\right)}{P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+\cdots+P\left(B_{n}\right) P\left(A / B_{n}\right)}\)

1-Mutually Disjoint :for all \((\mathrm{i}, \mathrm{j})\) such that \({ }_{4} \mathrm{j} \neq \mathrm{j}\) \(B_{i} \cap B_{j}=0\)

\section*{Bayes Formula}

\section*{- Motivation:}
- We would like the probability of the causes that generate the observations.
- Update our knowledge after the observations.


\section*{Bayes Formula}
- Laplace proposes taking into account the probability of the probability:


\section*{Bayes's formula}
- Context:
- Bayes defines probability as follows :
- The probability of any event is the ratio between the value at which an expectation depending on the happening of the event ought to be computed, and the chance of the thing expected upon it's happening

Expectation
depending on the


\section*{Bayes's formula}
- Expectation
- 1. anticipation of something happening: a confident belief or strong hope that a particular event will happen
- 2. notion of something: a mental image of something expected, often compared to its reality (often used in the plural)
- 3. expected standard: a standard of conduct or performance expected by or of somebody (often used in the plural
- Microsoft \(\circledR^{\circledR}\) Encarta \(®\) Reference Library 2003. © 19932002 Microsoft Corporation. All rights reserved.

49

\section*{Bayes's formula and Utility function}
- Usefullness of the Idea of utility
- People behave as if they were maximizing an Utility function, i.e, a 'moral expectation'
- Objects generated by the independent and free actions can be understood by means of the utility theory.
- Example: Value \(\left(B_{i} / A\right) \propto P\left(B_{i}\right) \operatorname{Utility}\left(A / B_{i}\right)\)



\section*{Application to the clinical analysis problem}
- Probability of having the illness given a possitive result (A).
\(P\left(B_{1} / A\right)=\frac{P\left(B_{1}\right) P\left(A / B_{1}\right)}{P(A)}=\frac{0.03^{*} 0.85}{0.0564}=0.452\) \(P\left(B_{2} / A\right)=\frac{P\left(B_{2}\right) P\left(A / B_{2}\right)}{P(A)}=\frac{0.02 * 0.92}{0.0564}=0.326\)
\(P\left(B_{3} / A\right)=\frac{P\left(B_{3}\right) P\left(A / B_{3}\right)}{P(A)}=\frac{0.01 * 0.78}{0.0564}=0.138\) \(P\left(B_{0} / A\right)=\frac{P\left(B_{0}\right) P\left(A / B_{0}\right)}{P(A)}=\frac{0.94 * 0.05}{0.0564}=0.083\)


52

\section*{Application to the clinical analysis problem}
- Probability of having the illness given a possitive result (A).
\(\begin{array}{lll}0.03 & 0.85 & 0.0564\end{array}\)
- Meaning:
\(P\left(B_{1} / A\right) \rightarrow 45 \%\)
\(P\left(B_{2} / A\right) \rightarrow 32 \%\)
\(P\left(B_{3} / A\right) \rightarrow 13 \%\)
\(P\left(B_{0} / A\right) \rightarrow 8.3 \% \quad\) False positive

\section*{Bayes and chance trees}
- Urn has 5 white balls and 3 black. One ball is taken randomly and introduced in another with 2 white and 1 black.
- A ball white is taken from the second urn.
- What is the probability that the first ball was black?.


\section*{Bayes and chance trees}
- Urn has 5 white balls and 3 black. One ball is taken randomly and introduced in another with 2 white and 1 black.
- A ball white is taken from the second urn.
- What is the probability that the first ball was black?


\section*{Bayes and chance trees}
- What is the probability that the first ball was black?.

\[
P\left(B_{1} / W_{2}\right)=\frac{P\left(B_{1}\right) P\left(W_{2} / B_{1}\right)}{P\left(B_{1}\right) P\left(W_{2} / B_{1}\right)+P\left(W_{1}\right) P\left(W_{2} / W_{1}\right)}=\frac{3 / 8 * 1 / 2}{3 / 8 * 1 / 2+5 / 8 * 3 / 4}
\]

\section*{Bayes and "the prosecutor's fallacy".}
-The prosecutor's fallacy
-The prosecutor's fallacy is the assertion that, because the stor \(y\) before the court is highly improbable, the defendant's innocence is equally improbable.
-OJ Simpson:
-Prob. Having a beating husband given that a woman has been killed->1/10.000
-Many more causes of death: accidents, age, illness, husband,etc
-Prob. of being killed given a beating husband->1/100
-If we exclude other causes, the conclusion
- A more difficult one: OJ Simpson:
- \(P\) ( being killed /a beating husband)
- \(P(\) a beating husband / being killed \()\)

\section*{P (cancer/positive test) \(=\) P (positive test/cancer)}
- Problem of concept:
- P(cancer/positive) ->Atribute of the pacient
- P (positive/cancer) ->Atribute of the test.
- What we want to know: (either)
- Efectivness of the treatment given how the pacients fare
- Diagnosis of the pacient given the result of the test
- Diagnosis problem: P ( cancer/positive test)
- We know:
- Clinical study: P (positive test/cancer) \(=0.9\)
- Statistics of the population: \(P(\) cancer \()=10 / 1000\)
- Note: could be the people that go the hospital

\section*{P (cancer/positive test) \(=\) P (positive test/cancer)}

\section*{- Diagnosis problem: P ( cancer/positive)}
- We know:
- Clinical study: P (positive test/cancer)=\(=0.9\)
- Statistics of the population: \(P\) (cancer) \(=10 / 1000\)

We define \(\rightarrow\left\{\begin{array}{l}C: \text { Pacient is ill of cancer } \\ \mathrm{P}: \text { Positive result in thetest }\end{array}\right.\)
\(P(C / P)=\frac{P(C) P(P / C)}{P(C) P(P / C)+P(\bar{C}) P(P / \bar{C})}=\frac{\frac{10}{1000} 0.90}{\frac{10}{1000} 0.90+\frac{990}{1000} 0.10}=0.0833\)
Note:
-90\% vs. 8.3\%
\(\cdot 1 \%\) is increased to \(8,3 \%\)

\section*{Game of Craps}
- Dice game. The player throws two dice; if the sum is 7 or 11 wins, if it is 2,3 , or 12 loses. If it has another result, continues until a 7 (loses) or the result of the first


Taken from: Cálculo de probabilidades I. R.Velez,V.Hernández 4,5,6,8,9,10 Win 61

\section*{Game of Craps}
- Justification of 28 slides for a problem:
- Indefinite duration
- Geometric series
- Conditioned probability and Bayes in different ways.


\section*{Game of Craps}
- Compute:
- Probability of winning
- Probability of getting a 5 in the first throw if it is known that the player has won.
- Note: inverse probability, which is the cause.
- The probability that the player wins if there have been k throws.


\section*{Game of Craps}
- Probability of winning :




\section*{Game of Craps}
- Probability of winning :

\[
p=P(X=4)
\]
\(q=P(X=\{\) NOT 7 NOR 4\(\})\)
\(P\left(G_{2} / X=4\right)=p+q^{1} p+q^{2} p+q^{3} p+q^{4} p \cdots\)
Geometric Series

\section*{Game of Craps}
- How do we sum an infinite geometric series? \(S=p+q^{1} p+q^{2} p+q^{3} p+q^{4} p \cdots=\frac{p}{1-q}\)


\section*{Game of Craps}
- How do we sum an infinite geometric series?
\[
S=p+q^{1} p+q^{2} p+q^{3} p+q^{4} p \cdots=\frac{p}{1-q}
\]

\section*{ner witan num}


\section*{Game of Craps}
- How do we sum an finite geometric series?
- Analitical Solution
\[
\begin{aligned}
& S=1+q^{1}+q^{2}+q^{3} \cdots+q^{N-1} \\
& S=1+q^{1}+q^{2}+q^{3} \cdots+q^{N-1}+\left(q^{N}-q^{N}\right) \\
& S=1+q^{1}\left(1+q^{1}+q^{2}+q^{3} \cdots+q^{N-1}\right)-q^{N} \\
& S=1+q S-q^{N} \\
& S=\frac{1-q^{N}}{1-q}
\end{aligned}
\]

\section*{Game of Craps}
 \(p=P(X=5)=\frac{4}{36}\) \(q=P(X=\{\) NOT 7 NOR 5\(\})=\frac{26}{36}\) \(P\left(G_{2} / X=5\right)=p \frac{1}{1-q}=\frac{4}{36} \frac{1}{1-\frac{26}{36}}=\frac{2}{5}\)

\section*{Note that by symetry:}
\[
P\left(G_{2} / X=4\right)=P\left(G_{2} / X=10\right)
\]
\[
P\left(G_{2} / X=5\right)=P\left(G_{2} / X=9\right)
\]
\[
P\left(G_{2} / X=6\right)=P\left(G_{2} / X=8\right)
\]
\(p=P(X=6)=\frac{5}{36}\)
\(q=P(X=\{\) NOT 7 NOR 6\(\})=\frac{25}{36}\)
\(P\left(G_{2} / X=6\right)=p \frac{1}{1-q}=\frac{5}{36} \frac{1}{1-\frac{25}{36}}=\frac{5}{11}\)
\(\qquad\)

\section*{Game of Craps}
- How do we sum an finite geometric series? \(S=p+q^{1} p+q^{2} p+q^{3} p \cdots+q^{N-1} p=p \frac{1-q^{N}}{1-q}\)


68


\section*{Game of Craps}
- We can sum \(P_{\left(G_{2} / X=4\right)}\)

\[
q=P(X=\{\text { NOT } 7 \text { NOR } 4\})=\frac{27}{36}
\]

\[
P\left(G_{2} / X=4\right)=p \frac{1-q^{N}}{1-q}=\frac{3}{36} \frac{1}{1-\frac{27}{36}}=\frac{1}{3}
\]

Wins-> Does not gets a 7 and repeats the first result

70


\section*{Game of Craps}
- Finally the probability of winning is:


\section*{Game of Craps}
- Finally the probability of winning is:
- Note that we have used the total probability
\[
P(G)=\underbrace{\frac{2}{9}}_{9}+\underbrace{363}_{\text {Tonaripobabiliy }}+\frac{4}{36}+\frac{4}{365}+\frac{5}{36}+\frac{42}{36}-\frac{3}{3} \cong 0.493
\]
\[
P(A)=P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+\cdots+P\left(B_{n}\right) P\left(A / B_{n}\right.
\]

\section*{Game of Craps}
-Probability of getting a 5 in the first throwif it is known that the player has won.
- Note: inverse probability, which is the cause?
\(P(\{X=5\} / G)=\frac{P\{(X=5\}) P(G /\{X=5\})}{P(G)}=\frac{4}{365} 0 \frac{11}{0.433}=\frac{11}{122}\)


74

\section*{Game of Craps}
- The probability that the player wins if there have been \(\boldsymbol{k}\) throws.
- The condition is that the player wins and at least there have been \(\mathrm{N}>\mathrm{k}\) rounds: \(P(G /\{N>k\})\)
- Note: that the temporal structure depends on getting in the first throw one element of the set \(=\{4,5,6,8,9,10\}\)
\(\left\{\begin{array}{l}P(N>k / X=4) \\ P(N>k / X=5)\end{array}\right.\)
\(P(G /\{N>k\}) \longrightarrow\)
\(\left\{\begin{array}{l}P(N>k / X=6) \\ P(N>k / X=8) \\ P(N>k / X=9)\end{array}\right.\)
\(P(N>k / X=9)\)
\(P(N>k / X=10)\)

\section*{Game of Craps}
- The probability that the player wins if there have been \(\boldsymbol{k}\) throws.
- Case: \(P(N>k / X=4)\)
- Note: the condition for playing \(\mathrm{N}>\mathrm{k}\) rounds given that the first sum was 4 is:
\(\{\) Get a 4\(\} A N D \underbrace{\{\text { NOT } 7 \text { NOR } 4\} A N D \cdots A N D\{\text { NOT } 7 \text { NOR 4\} } A N D\{\text { after anythingelse }\}}\)
\(P(N>k / X=4)=\frac{P(X=4) P(X=\{\text { NOT } 7 \text { NOR4 }\})^{k-1}}{P(X=4)} P(\) anythinglse \()\)

\section*{Game of Craps}
- The probability that the player wins if there have been \(\boldsymbol{k}\) throws.
\[
P(N>k / X=4)=\frac{P(X=4) P(X=\{\text { NOT 7 NOR4 }\})^{k-1}}{P(X=4)} P(\text { anythinglse })
\]
\[
P(X=\{\text { NOT } 7 \text { NOR } 4\})=\frac{27}{36}
\]
\(P(N>k / X=4)=\left(\frac{27}{36}\right)^{k-1}=P(N>k / X=10)\)

\section*{\begin{tabular}{ccccccccccc}
\hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \(1 / 36\) & 236 & 336 & 436 & 536 & 636 & 536 & 436 & \(3 / 36\) & 236 & \(1 / 36\) \\
\hline
\end{tabular}}

\section*{Game of Craps}
- The probability that the player wins if there have been \(\boldsymbol{k}\) throws.
- For the rest of the set=\{4,5,6,8,9,10\}
\[
\begin{aligned}
& P(N>k / X=4)=\left(\frac{27}{36}\right)^{k-1}=P(N>k / X=10) \\
& P(N>k / X=5)=\left(\frac{26}{36}\right)^{k-1}=P(N>k / X=9) \\
& P(N>k / X=6)=\left(\frac{25}{36}\right)^{k-1}=P(N>k / X=8)
\end{aligned}
\]

\section*{Game of Craps}
- The probability that the player wins ifthere have been \(k\) throws.
- We will compute the probabity of \(\mathrm{N}>\mathrm{k}\) which we will need for conditioning.
\(P(N>k)=(P(X=4) P(N>k / X=4)+P(X=5) P(N>k / X=5)+P(X=6) P(N>k / X=6)) * 2\) \(P(N>k)=\frac{6}{36}\left(\frac{27}{36}\right)^{k-1}+\frac{8}{36}\left(\frac{26}{36}\right)^{k-1}+\frac{10}{36}\left(\frac{25}{36}\right)^{k-1}\)

Symetry of the prob. of the set=\{4,5,6,8,9,10\}


\section*{Game of Craps}
- The probability that the player wins ifthere have been \(k\) throws.
For \(\mathrm{i}=\mathrm{k}+1\) toinfinitehappenseither of thefollowingvents
\(\{\) Get a 4 OR 10\(\}\) AND \(\{\underbrace{\text { NOT } 7 \text { NOR }(4,10)\} A N D \cdots A N D\{N O T ~} 7\) NOR \((4,10)\} A N D\{\) win \(\}\)
\[
\begin{aligned}
& i-2 \text { times } \\
& \mathrm{i} \geq \mathrm{k}+1
\end{aligned}
\]

\[
\begin{array}{lllllllllll}
\hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 1 / 36 & 2 / 36 & 3 / 36 & 4 / 36 & 5 / 36 & 8 / 36 & 5 / 36 & 4 / 36 & 3 / 36 & 2 / 36 & 1 / 36 \\
\hline
\end{array}
\]

\section*{Game of Craps}
- The probability that the player wins ifthere have been \(\boldsymbol{k}\) throws.
\[
\begin{aligned}
& P(\{N>k\} \cap G /\{X=4\} \cup\{X=10\})=\sum_{i=k+1}^{\infty} \frac{3}{36}\left(\frac{27}{36}\right)^{i-2}=\frac{1}{3}\left(\frac{27}{36}\right)^{k-1} \\
& P(\{N>k\} \cap G /\{X=5\} \cup\{X=9\})=\sum_{i=k+1}^{\infty} \frac{4}{36}\left(\frac{26}{36}\right)^{i-2}=\frac{4}{10}\left(\frac{26}{36}\right)^{k-1} \\
& P(\{N>k\} \cap G /\{X=6\} \cup\{X=8\})=\sum_{i=k+1}^{\infty} \frac{5}{36}\left(\frac{25}{36}\right)^{i-2}=\frac{5}{11}\left(\frac{25}{36}\right)^{k-1}
\end{aligned}
\]


\section*{Game of Craps}
- The probability that the player wins ifthere have been \(\boldsymbol{k}\) throws.
\[
\{N>k\} \cap G \text { given that }\{X=4\} \cup\{X=10\}
\]

For \(\mathrm{i}=\mathrm{k}+1\) to infinite happeneitherof thefollowingevents \(\{\) Geta 4 OR10 \(\} A N D\{\underbrace{\text { NOT } 7 \operatorname{NOR}(4,10)\} A N D \cdots A N D\{\text { NOT } 7 \operatorname{NOR}(4,10)\}}\) AND \(\{\) win \(\}\)

\section*{\(i-2\) times}
\(\mathrm{i} \geq \mathrm{k}+1\)
\[
P(\{N>k\} \cap G /\{X=4\} \cup\{X=10\})=\sum_{i=k+1}^{\infty} \frac{6}{36}\left(\frac{27}{36}\right)^{i-2}
\]

\section*{Game of Craps}
- Sum of the geometric series
\[
\begin{aligned}
& \frac{6}{36} \sum_{i=k+1}^{\infty}\left(\frac{27}{36}\right)^{i-2} \underset{\substack{c, v \\
\rightarrow i-(k+1)}}{=} \frac{6}{36} \sum_{l=0}^{\infty}\left(\frac{27}{36}\right)^{l+k-1}=\frac{6}{36}\left(\frac{27}{36}\right)^{k-1} \sum_{l=0}^{\infty}\left(\frac{27}{36}\right)^{l} \\
& =\frac{6}{36}\left(\frac{27}{36}\right)^{k-1} \frac{1}{1-\frac{27}{36}}=\frac{6}{36}\left(\frac{27}{36}\right)^{k-1} \frac{36}{36-27}=\frac{1}{3}\left(\frac{27}{36}\right)^{k-1}
\end{aligned}
\]

Criterion for selecting the change of variables:
Transform the original sum into the known one \(\quad S=p \sum_{n=0}^{\infty} q^{n}=\frac{p}{1-q}\)

\section*{Game of Craps}
- The probability that the player wins ifthere have been \(\boldsymbol{k}\) throws.
\[
\begin{aligned}
& P(\{N>k\} \cap G)=\frac{6}{36} \frac{1}{3}\left(\frac{27}{36}\right)^{k-1}+\frac{8}{36} \frac{4}{10}\left(\frac{26}{36}\right)^{k-1}+\frac{10}{3611} \frac{5}{36}\left(\frac{25}{3}\right)^{k-1} \\
& \text { Totalprobabiliy } \\
& P(A)=P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)+P\left(B_{3}\right) P\left(A / B_{3}\right) \\
& P(\{N>k\} \cap G /\{X=4\} \cup\{X=10\}) \\
& P(\{N>k\} \cap G /\{X=5\} \cup\{X=9\}) \\
& P(\{N>k\} \cap G /\{X=6\} \cup\{X=8\})
\end{aligned}
\]

\section*{Game of Craps}
- The probability that the player wins ifthere have been \(k\) throws.
- Final Probability
\[
\begin{aligned}
& P(G /\{N>k\})=\frac{P(\{N>k\} \cap G)}{P(N>k)}= \\
& =\frac{\frac{61}{363}\left(\frac{27}{36}\right)^{k-1}+\frac{8}{36} \frac{4}{10}\left(\frac{26}{36}\right)^{k-1}++\frac{10}{36} \frac{5}{11}\left(\frac{25}{36}\right)^{k-1}}{\frac{6}{36}\left(\frac{27}{36}\right)^{k-1}+\frac{8}{36}\left(\frac{26}{36}\right)^{k-1}+\frac{10}{36}\left(\frac{25}{36}\right)^{k-1}}
\end{aligned}
\]

\section*{Bayes and "the prosecutor's fallacy".}
- The prosecutor's fallacy
- The prosecutor's fallacy is the assertion that, because the story before the court is highly improbable, the defendant's innocence is equally improbable.
- OJ Simpson:
- The chance that a random sample of DNA would match that of O.J. Simpson was put at one in 4 m . Long odds: but, as Johnnie Cochran, Mr Simpson's counsel, explained to the jury, there are 20 m people in the Los Angeles area. Mr Simpson was therefore one of several people whose blood might be matched to the scene and he could not be guility beyond reasonable doubt.
Bayes and "the prOSPCUtOr'S
. The prosecutor's fallacy
- The prosecutor's fallacy is the assertion that, because the story before the court
is highly improbable, the defendant's innocence is equally improbable.
- OJ Simpson:
- The chance that a random sample of DNA would match that of O.J. Simpson
was put at one in 4m. Long odds: but, as Johnnie Cochran, Mr Simpson's
counsel, explained to the jury, there are 20 m people in the Los Angeles area. Mr
Simpson was therefore one of several people whose blood might be matched to
the scene and he could not be guilty beyond reasonable doubt.
\(P(\) Guilty \(/\) DNA Matches \()=\frac{P(\text { Guilty }) P(\text { DNA Matches Guilty })}{P(\text { Guilty }) P(\text { DNA Matches Guilty })+P \text { Not Guilty }) P(\text { DNA Matches/ Not Guilty })}\)
\(P(\) DNAMatches \() P(\) DNA Matches / Guilty \()\) REVISSAR!!!!!


\section*{Game of Craps}
- The probability that the player wins ifthere have been \(k\) throws.
- What happens when \(k\)->infinite

- Probability of getting a 5 in the first throw if it is known that the player has won.
- Note: inverse probability, which is the cause.```

