Problems of Allocation Of Probabilities

Combinatorial Methods
“The neighbour problem”
• Eight important heads of state, the US president and the British prime minister are present at a summit. At the photo the dignitaries are lined up randomly.
• Compute the probability that they are next to each other.

• Number of heads \(\{ h_1, h_2, \cdots, h_8 \} \)
 \(h_1 \rightarrow US \) \(h_2 \rightarrow UK \)
• Possible arrangements \(8! \)
• If \(\{ h_i, h_{i+1} \} \) are fixed, remains \(6! \) arrangements

• Condition of being next to each other
• Two possibilities: \(\{ h_i, h_{i+1} \} = \{ h_i, h_{i+1} \} \)
• Possible arrangements: \(6! \times 2 \)
• Probability \(\Pr = \frac{6! \times 7 \times 2}{8!} = \frac{1}{4} \)

Another Approximation for the Birthday problem

• Derivation:
\[
\Pr(A) = 1 - \prod_{i=1}^{N} \left(1 - \frac{1}{N} \right) = 1 - \prod_{i=1}^{N} \left(1 - \frac{1}{i} \right) = 1 - \frac{1}{N^{N}} = 1 - e^{-N/N^{2}}
\]

Another Approximation for the Birthday problem

• Aprox. of the exponential:
\[
e^{x} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \cong 1 + x
\]

\[\text{Worst case} \quad 23/365=0.0630\]
Another Approximation for the Birthday problem

• Arithmetic sum:

\[S = \sum_{i=1}^{n} \left(\frac{1}{i(i+1)(i+2)} \right) \]

A solution to the secretary problem

• Taken from T. Ferguson, Who solved the secretary problem?

• Assumptions:
 1. There is one secretarial position available.
 2. The number of applicants \(n \) is known.
 3. The applicants are interviewed sequentially in random order.
 4. Decision is made on relative ranks.
 5. Rejected applicant cannot be recalled.
 6. Payoff is 1 if you choose the best and 0 otherwise.

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=4 \)

<table>
<thead>
<tr>
<th>Permutation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=5 \) (120)

<table>
<thead>
<tr>
<th>Permutation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>0.31</td>
<td>0.69</td>
</tr>
<tr>
<td>0.31</td>
<td>0.25</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=6 \) (720)

<table>
<thead>
<tr>
<th>Permutation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>0.20</td>
<td>0.17</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Condition for solving the problem:
 – The best is at position \(j \), and before \(r \) we have the second best.
 • Note: Relative ranking to the ones that have been examined. Absolute values do not count.
 • Absolute value
 – Should be treated equal
 • Relative ranking
 – Should be treated equal

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=6 \) (720)

<table>
<thead>
<tr>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.33</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.17</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=5 \) (120)

<table>
<thead>
<tr>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>0.13</td>
</tr>
<tr>
<td>0.31</td>
</tr>
<tr>
<td>0.69</td>
</tr>
<tr>
<td>0.31</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Empirical simulations:
 – Case of \(n=4 \)

<table>
<thead>
<tr>
<th>Permutation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

A solution to the secretary problem

• Condition for solving the problem:
 – The best is at position \(j \), and before \(r \) we have the second best.
 • Note: Relative ranking to the ones that have been examined. Absolute values do not count.
 • Absolute value
 – Should be treated equal
 • Relative ranking
 – Should be treated equal
A solution to the secretary problem

- Formal description of the problem:

 \[P(\text{the second best until j is before } r) = \frac{(n-1)!}{n^r} \]

- An approximation if the sum is big enough

 \[\text{We substitute the sum by the integral} \]

\[P(r) = \sum_{j=1}^{n-1} P(j \text{ is best before } r) \approx \frac{1}{n} \int_{1}^{n-1} \log \left(\frac{n}{j} \right) \, dj \]

Appendix. Integral of a logarithm

\[\int_{a}^{b} \log(x) \, dx = \log(b) - \log(a) \]
A solution to the secretary problem

• How good is the approximation?
 - $N=50$, $r=37\%$ and $r=15\%$

\[
Pr(r) = \frac{1}{n} \sum_{j=1}^{n} \frac{e^{-j/n}}{j/n}
\]

Urn Problem

• n balls are randomly distributed into n urns. Compute the probability that:
 1. A given urn is empty
 2. At least one urn is empty
 3. A given urn is the only empty
 4. There is only one empty urn

Urn Problem

• A given urn is empty
 - The balls can be distributed into $(n-1)$ urns leaving a given one empty.

\[
Pr(A \text{ given urn}) = \frac{(n-1)!}{n^n}
\]

Urn Problem

• At least one urn is empty
 - We should compute the complementary probability

\[
Pr(\Omega - \{\sigma_n\}) = Pr(\sigma_1) + Pr(\sigma_2) + Pr(\sigma_3) + \cdots + 1 - Pr(\sigma_n)
\]

- There are $n!$ ways of assigning one ball to one urn

\[
Pr(\text{At least one urn}) = 1 - \frac{n!}{n^n}
\]

Urn Problem

• A given urn is the only empty
 - All the others except one have only one ball.
 - Ways of selecting a couple of balls
 - Ways of distributing the balls: $(n-1)!$

• Note that if the two balls are substituted by a new ball with different colour we have an equivalent problem.

\[
Pr = \binom{n}{2} \frac{(n-1)!}{n^n} = \frac{n(n-1)}{2n^n}
\]

Urn Problem

• There is only one empty urn
 - It is the probability that the empty urn is either the first or the second or etc.

\[
Pr(\sigma_1) + Pr(\sigma_2) + \cdots + Pr(\sigma_n)
\]

\[
Pr = n \binom{n}{2} \frac{(n-1)!}{n^n} = \binom{n}{2} \frac{n(n-1)!}{2n^n}
\]
An Election Problem (Markov)

• In an election with two candidates
 – A gets n votes
 – B gets m votes
• Compute the probability of the event:
 – E={A is always ahead in the count of votes}