## Connectionless Services in ATM Networks

- ITU-T approach
  - Indirect connectionless service
  - Direct connectionless service
- IETF approach
  - Classical IP over ATM
- •ATM Forum approach
  - LAN Emulation

ourc DAC JDP















| Conne               | ecti                      |                     | ss :<br>etw |           |           | ces in          | ATN | Л   |               |
|---------------------|---------------------------|---------------------|-------------|-----------|-----------|-----------------|-----|-----|---------------|
| Bit                 | 32                        |                     |             |           |           | 1               | 1   |     |               |
| Word 1              | Desti                     | nation add          | ress        |           |           |                 |     |     |               |
| 2                   | Desti                     | nation add          | ress        |           |           |                 |     |     |               |
| 3                   | Sour                      | ce address          |             |           |           |                 |     |     |               |
| 4                   | Source address            |                     |             |           |           |                 |     |     |               |
| 5                   | PI<br>6b                  | PAD<br>length<br>2b | QoS<br>4b   | CIB<br>1b | HEL<br>3b | Reserved<br>16b |     |     |               |
| 6                   | Header extension          |                     |             |           |           |                 |     |     |               |
|                     | Header extension post pad |                     |             |           |           |                 |     |     |               |
| 11                  | User information          |                     |             |           |           |                 |     |     |               |
| N                   | Optional 32 bit CRC       |                     |             |           |           |                 |     | og. |               |
| CLNAP-PDU structure | :.<br>-                   |                     |             |           |           |                 |     |     | edic DAC DATE |

| Connectionless Services in ATM Networks |                                   |                       |  |  |  |
|-----------------------------------------|-----------------------------------|-----------------------|--|--|--|
|                                         | CLNAP-PDU                         |                       |  |  |  |
|                                         | Alignement<br>header              | Mappinng entity       |  |  |  |
|                                         | CLNIP-PDU header                  | CLNIP<br>layer        |  |  |  |
| CPCS<br>header                          |                                   | AAL 3/4<br>CPCS layer |  |  |  |
| BOM segmen                              | t                                 | AAL 3/4               |  |  |  |
|                                         | COM segment                       | SAR layer             |  |  |  |
|                                         | EOM segment                       |                       |  |  |  |
| Encapsulation                           | of a CLNAP-PDU within a CLNIP-PDU |                       |  |  |  |

## **IETF** Approach

• IP over ATM

#### Classical IP over ATM

- RFC 1577 Classical IP and ARP over ATM
- "direct substitution of cables, LAN segments, dedicated circuits, etc.
- AAL5 (best performance)
- ATM-ARP and In-ATM-ARP
- VCCs between pairs of WS within a LIS
- ATM-ARP server (well known address)

AIPCDAC.IDP

#### Classical IP over ATM

- RFC 1483 Multiprotocol Encapsulation over ATM AAL5
- LLC/SNAP (SubNetwork Attachment Point)
- LLC header indicates the protocol
- Several protocols (LAN bridging, LAN routing exist on a single VCC)

UPC DAC JDP

#### Classical IP over ATM

- RFC 1626 Default IP MTU for use over ATM AAL5
- Maximum Transmission Unit (IP segment):

TCP, UDP, LLC, RPC/XDR: 8300 bytes

NFS: 8192 bytes SMDS: 9180 bytes

• Default MTU: 9180 bytes

CHECDACID

#### Multicast IP

- RFC 1112
- Encapsulation of multicast IP datagrams into IP datagrams
- "tunneling"
- IP multicast address: Class D 224.x.y.z - 239.x.y.z session address (not host address)

PC DAC JDP

#### Multicast IP over ATM

- IP over ATM
- Multicast IP
- Two alternatives
  - Full mesh of VCCs
  - Multicast server
- ATM switches with point-to-multipoint connections (replication of cells)

UPCDACJDP



werence to

#### ATM Forum Approach

- LAN Emulation over ATM
  - LANE v1, January 1995
  - LANE v2, July 1997
  - UNI 3.0, UNI 3.1, UNI 4.0

#### LAN Emulation over ATM

#### **KEY ISSUES:**

- Complete Multivendor Interoperability
- Scalability
- Seamless Connectivity
- Transitional Support for "Current LAN's"
- Provide a complete long term solution for "Current LAN technology" integration & support
- · Robustness & Redundancy
- Coherent Integrated Multivendor Network Management

OUI OVO JOI

# Business case issues. Why LANE/ATM?

- Virtual work groups: The ability to create virtual workgroups using workstations, fileservers & other equipment regardless of location
- Virtual networks: The ability to create virtual networks using a common infrastructure.
- Manageable bandwith: The ability to provide a certain quality of service and bandwith.
- Reduced operations cost through simplified moves & changes process.

#### User Site Requirements Rationale

- Provide a transitional path for existing deployed workstations, fileservers, and network equipment.
- Replace the existing Campus MAN FDDI backbone with an ATM enterprise network infrastructure.
- Migrate the existing corporate WAN to an ATM enterprise network infrastructure.
- Increase throughput and perforance & reduce latency for applications such as desktop video conferencing

and Dan Dan

#### LAN Characteristics

- Connectionless Service
- Multicast MAC Address
- MAC driver Interface (APPN, NETBIOS, IPX, AppleTalk, IP)
- Standarized MAC interfaces:
  - NDIS (Network Driver Interface Specification)
  - ODI (Open Data-Link Interface)
  - DLPI (Data Link Provider Interface)

#### **Emulated LANs over ATM**

- Several emulated LANs (ELANs) within an ATM network
- Multiple ELANs over a single ATM network are logically independent
- Interconnection with existing LANs (bridging mechanisms: Trasparent Bridging and Source Routing Bridging)

MIPCDACIDE







#### **LANE Service**

- Types:
  - Ethernet / IEEE802.3
  - IEEE802.5 (Token Ring)
- Components:
  - Set of LANE Clients (LECs)
  - LAN Emulation Service (LE Service)
    - LECS (LE Configuration Server)
    - LES (LE Server)
    - BUS (Broadcast and Unknown Server)

UPC/DAC November 2006

OUI DVO DOI



### **LEC Interfaces**

- (1) Higher Layers (user data frames)
- (2) AAL5 (user data frames)
- (3) Connection Management (VCCs)
- (4) Initialization and control
- (5) LLC-multiplexed frames (LANEv2)
- (6) LLC-multiplexed flows management

CUPCDACIDS

## LANE UNI (LUNI)

 LUNIv2 provides enhanced capabilities (LLC multiplexing, support for ABR, enhanced multicast and MPOA support)

#### LAN Emulation over ATM



The LAN Emulation User to Network Interface (LUNI)

### LANE Server (LES)

- Control for ELAN
- Registering and resolving unicast and multicast addresses and/or route descriptors to ATM addresses (ATMARP)
- One LEC is connected with one LES

## LE Configuration Server (LECS)

- Assign individual LECs to different ELANs
- Configuration DB
- LECS gives the LES ATM address to LECs
- LECs obtain information from an LECS

#### Bcast and Unkn Server (BUS)

- Provides the connectionless service:
  - Handles MAC Broadcast Addresses
  - Handles multicast data
  - Handles initial unicast data sent by an LEC before the target ATM address has been resolved
- BUS serializes frames (avoid AAL5 frame interleaving)
- Participates in LE\_ARP so that a LEC may locate its BUS

LANE Components

- LECs are typically implemented in ATM end stations
  - ATM Host, ATM PC, ATM WS
  - Bridges, Routers (ATM interfaces)
- LE Service may be implemented in ATM switches and ATM end stations

cupcoacup













#### LAN Emulation over ATM

LAN Emulation Non-multiplexed Data Frame Format for IEEE 802.3/Ethernet Frames

| I | 0               | LE HEADER           | DESTINATION ADDR |  |  |  |  |
|---|-----------------|---------------------|------------------|--|--|--|--|
|   | 4               | DESTINATION ADDRESS |                  |  |  |  |  |
|   | 8               | SOURCE              | SOURCE ADDRESS   |  |  |  |  |
|   | 12              | SOURCE ADDR         | TYPE/LENGTH      |  |  |  |  |
|   | 16<br>and<br>on | INÉ                 | FO               |  |  |  |  |

LAN Emulation LLC-multiplexed Data Frame Format for IEEE 802.3/Ethernet Frames

| 0               | LLC-X"AA"           | LLC-X"AA" | LLC-X"03"        | OUI-X"00" |  |
|-----------------|---------------------|-----------|------------------|-----------|--|
| 4               | OUI-X"AD" OUI-X"3E" |           | FRAME-TYPE       |           |  |
| 8               | ELAN-ID             |           |                  |           |  |
| 12              | LE HE               | ADER      | DESTINATION ADDR |           |  |
| 16              | DESTINATION ADDRESS |           |                  |           |  |
| 20              | SOURCE ADDRESS      |           |                  |           |  |
| 24              | SOURC               | E ADDR    | TYPE/LENGTH      |           |  |
| 28<br>and<br>on |                     | -         | NFO              |           |  |

## LAN Emulation over ATM

Control Frame

| 0   | MARKER = X"FF00"       |                        | PROTOCOL =<br>X"01" | VERSION =<br>X"01" |  |
|-----|------------------------|------------------------|---------------------|--------------------|--|
| 4   | OP-C                   | ODE                    | STATUS              |                    |  |
| 8   | TRANSACTION-ID         |                        |                     |                    |  |
| 12  | REQUEST                | ER-LECID               | FLAGS               |                    |  |
| 16  | SOURCE-LAN-DESTINATION |                        |                     |                    |  |
| 24  | TARGET-LAN-DESTINATION |                        |                     |                    |  |
| 32  | SOURCE-ATM-ADDRESS     |                        |                     |                    |  |
| 52  | LAN-TYPE               | MAXIMUM-<br>FRAME-SIZE | NUMBER-TLVS         | ELAN-NAME-<br>SIZE |  |
| 56  | TARGET-ATM-ADDRESS     |                        |                     |                    |  |
| 76  | ELAN-NAME              |                        |                     |                    |  |
| 108 | TLVs BEGIN             |                        |                     |                    |  |

LANE Control Frame

## Three approaches to converting Legacy LANs to ATM Emulated LANs

- "ATM Workgroup"

  Attach End Systems to ATM Network
- "ATM Backbone"

  Attach Hub/Bridge/Routers to ATM Network
- Hybrid (ATM Workgroups & Backbone)

UPC DAC JDP

## Small & Large Networks

- "Small Network"
  - 50 or less users
  - Usually one site
  - LAN & dial-up public WAN
- "Large Network"
  - 500 or more users
  - Many sites
  - LANs, private WAN & public dial-up WAN

IPC DAC LIDE











