
1

OpenMP: a shared-memory
parallel programming model

Eduard Ayguadé
Computer Sciences Department Associate Director (BSC)
Professor of the Computer Architecture Department (UPC)

OpenMP for shared memoryOpenMP for shared memory

First definition in 1996
Today, industry standard, main vendors support it

Advantages
Easy to program, debug, modify and maintain
Incremental parallelization from the beginning

Improve programming productivity
Neither communication nor data distribution needed

Language extensions to Fortran77/90 and C/C++
Directives or pragmas that can be ignored when compiled in
sequential
Intrinsic function in OpenMP library
Environment variables

2

Three components of OpenMPThree components of OpenMP

OMP directives/pragmas
These form the major elements of OpenMP programming,
they

Create threads
Share the work amongst threads
Synchronize threads

Library routines
These routines can be used to control and query the parallel
execution environment such as the number of processors
that are available for use

Environment variables
The execution environment such as the number of threads
to be made available to an OMP program can also be set at
the operating system level before the program execution is
started (an alternative to calling library routines)

PARALLEL region constructPARALLEL region construct

Specification of parallel region
C$OMP [END] PARALLEL [clause[[,] clause]…]
#pragma omp parallel [clause [clause]…]

Execution model:
When a thread encounters a parallel region, it creates a
team of threads, and it becomes the master of the team.
The number of threads in a team remains constant for the
duration of the parallel region
Parallelism is added incrementally: i.e. the sequential
program evolves into a parallel program

fo
rk

jo
in

fo
rk

jo
in

end of parallel region,
implicit barrierbegining of parallel region

fo
rk

jo
in

nested parallel region
end of nested parallel
region,
implicit barrier

3

Some useful intrinsic functionsSome useful intrinsic functions

To identify individual threads by number
Fortran:

INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:
int omp_get_thread_num(void)

Returns value between 0 … OMP_GET_NUM_THREADS()-1

To find out how many threads are being used
Fortran:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++:
int omp_get_num_threads(void);

Returns value 1 if outside the parallel region else the
number of threads available

PARALLEL region constructPARALLEL region construct

Each thread executes the same code redundantly
double A[1000];
omp_set_num_threads(4);

#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}

printf(“all done\n”);

double A[1000];
omp_set_num_threads(4);

#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}

printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)
A single
copy of A is
shared
between all
threads

A single
copy of A is
shared
between all
threads

Threads wait here for all threads to finish
before proceeding (I.e. a barrier)
Threads wait here for all threads to finish
before proceeding (I.e. a barrier)

4

PARALLEL region constructPARALLEL region construct

Clauses:
NUM_THREADS(integer_exp), IF(logical_exp),
PRIVATE(list), SHARED(list), FIRSTPRIVATE(list),
REDUCTION({operator|intrinsic}:list), COPYIN(list)

Number of threads at each level:
Environment variable OMP_NUM_THREADS
Intrinsic function omp_set_num_threads (in serial
part)
NUM_THREADS clause

fo
rk

jo
in

fo
rk

jo
in

nested parallel region,
NUM_THREADS=2

parallel region,
NUM_THREADS=3

serial region,
omp_set_num_threads(3),
setenv OMP_NUM_THREADS=3

First example: computation of PIFirst example: computation of PI

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)∆x ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width ∆x and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

. 0
/(1

+x
2)

4.0

2.0

1.0
X0.0

5

First example: computation of PIFirst example: computation of PI

static long num_steps = 100000;
double step;
void main ()
{

int i;
double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}

pi = step * sum;
}}

F (
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

Processor 0
Processor 1

Processor 2
Processor 3

First example: computation of PIFirst example: computation of PI

#include <omp.h>
static long num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{ int i, id;

double x, pi, sum;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel private(x, i, id) reduction(+:sum)
{

id = omp_get_thread_num();
for (i=id+1; i<=num_steps; i=i+NUM_THREADS) {

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}

}
pi = sum * step;

}

F (
x)

 =
 4

.0
/(1

+x
2)

4.
0

2.
0

1.
0X0.

0

6

Work distributionWork distribution

Work sharing constructs
Split up loop iterations among the threads in the team
Give a different structured block to each thread in the team
Give a structured block to just one thread in the team

Work distribution,
implicit barrier

fo
rk

jo
in

fo
rk

jo
in

fo
rk

jo
in

Work distribution,
implicit barrier

Work distribution: DO loopsWork distribution: DO loops

Syntax:
#pragma for [clause[clause]…]

C$OMP [END] DO [clause[[,] clause]…]

Clauses:
Data scope: PRIVATE(list), LASTPRIVATE(list),
FIRSTPRIVATE(list), REDUCTION(list)
Iteration scheduling: SCHEDULE(type[,chunk])
Synchronization: NOWAIT, ORDERED

7

First example: computation of PIFirst example: computation of PI

#include <omp.h>
static long num_steps = 100000;
double step;
#define NUM_THREADS 2
void main ()
{

int i;
double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel for reduction(+:sum) private(x)
for (i=1; i<=num_steps; i++){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Loop scheduling strategiesLoop scheduling strategies

Loop schedules:
SCHEDULE(STATIC[,chunk]): iterations are divided into
pieces of a size specified by chunk. Pieces are statically
assigned to threads in a round-robin fashion following thread
number.
SCHEDULE(DYNAMIC[,chunk]): iterations are broken into
pieces of size specified by chunk. Pieces are dynamically
assigned to threads.
SCHEDULE(GUIDED[,chunk]): the chunk size is reduced in
an exponentially decreasing manner with each dispatched
piece of the iteration space. chunk specifies the minimum
size.

8

Synthetic example: work unbalanceSynthetic example: work unbalance

PROGRAM test
PARAMETER (N=1024)
REAL dummy(N), factor
INTEGER i, iter, time

factor=1/1.0000001

DO iter=1,5
C$OMP PARALLEL DO SCHEDULE(STATIC)
C$OMP& SHARED(dummy) PRIVATE(i, time)

DO i=0,N
dummy(i)= dummy(i)*factor
time = i/100
call delay(time)

ENDDO
ENDDO

END

Synthetic example: work unbalanceSynthetic example: work unbalance

PROGRAM test
PARAMETER (N=1024)
REAL dummy(N), factor
INTEGER i, iter, time

factor=1/1.0000001

DO iter=1,5
C$OMP PARALLEL DO SCHEDULE(DYNAMIC)
C$OMP& SHARED(dummy) PRIVATE(i, time)

DO i=0,N
dummy(i)= dummy(i)*factor
time = i/100
call delay(time)

ENDDO
ENDDO

END

Low unbalance

9

Synthetic example: work unbalanceSynthetic example: work unbalance

PROGRAM test
PARAMETER (N=1024)
REAL dummy(N), factor
INTEGER i, iter, time

factor=1/1.0000001

DO iter=1,5
C$OMP PARALLEL DO SCHEDULE(DYNAMIC)
C$OMP& SHARED(dummy) PRIVATE(i, time)

DO i=0,N
dummy(i)= dummy(i)*factor
time = i/100
call delay(time)

ENDDO
ENDDO

END

Low unbalance

High overhead

Synthetic example: work unbalanceSynthetic example: work unbalance

Less overhead

Some imbalance:
Heavy chunks towards the
end

PROGRAM test
PARAMETER (N=1024)
REAL dummy(N), factor
INTEGER i, iter, time

factor=1/1.0000001

DO iter=1,5
C$OMP PARALLEL DO SCHEDULE(DYNAMIC, 50)
C$OMP& SHARED(dummy) PRIVATE(i, time)

DO i=0,N
dummy(i)= dummy(i)*factor
time = i/100
call delay(time)

ENDDO
ENDDO

END

10

Synthetic example: work unbalanceSynthetic example: work unbalance

Less overhead

Good load balance:
Heavy chunks towards the
beginning

Dynamic:
Non repetitive pattern

PROGRAM test
PARAMETER (N=1024)
REAL dummy(N), factor
INTEGER i, iter, time

factor=1/1.0000001

DO iter=1,5
C$OMP PARALLEL DO SCHEDULE(GUIDED)
C$OMP& SHARED(dummy) PRIVATE(i, time)

DO i=0,N
dummy(i)= dummy(i)*factor
time = i/100
call delay(time)

ENDDO
ENDDO

END

Synthetic example: work unbalanceSynthetic example: work unbalance

Dynamic

Dynamic,50

Guided

Same scale

11

Work distribution: SECTIONSWork distribution: SECTIONS

SECTIONS: worksharing construct that gives a different
structured block to each thread in a team

Fortran:

$OMP SECTIONS [clause [[,] clause] …]
:

$OMP SECTION
:

$OMP END SECTIONS [clause]

C/C++:

#pragma omp sections [clause [clause] …]
{
#pragma omp section

[structured-block]
#pragma omp section

[structured-block]
:
}

Work distribution: SECTIONSWork distribution: SECTIONS

Example
!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION

call init(x)
call processA(x)

!$OMP SECTION
call init(y)
processB(y)

!$OMP SECTION
call init(z)
processC(z)

!$OMP END SECTIONS
!$OMP END PARALLEL

se
ria

l
in

it(
x)

, p
ro

ce
ss

A
(x

)

id
le

id
le

id
le

id
le

id
le

id
le

se
ria

l
in

it(
y)

, p
ro

ce
ss

B
(y

)
in

it(
z)

, p
ro

ce
ss

C
(z

)

12

Work distribution: SINGLEWork distribution: SINGLE

SINGLE: worksharing that gives a structured block to
a single thread in a team

Example

#pragma omp parallel
{

setup(x);
#pragma omp single
{

input(y);
}
work(x,y);
}

id
le

id
le

id
le id

le
id

le

se
tu

p(
x)

se
tu

p(
x)

se
tu

p(
x)

se
tu

p(
x)

se
tu

p(
x)

se
tu

p(
x)

in
pu

t(y
)

w
or

k(
x,

y)
w

or
k(

x,
y)

w
or

k(
x,

y)
w

or
k(

x,
y)

w
or

k(
x,

y)
w

or
k(

x,
y)

How do threads interact?How do threads interact?

OpenMP is a shared memory model
Threads communicate by sharing variables

Unintended sharing of data causes race conditions
Race condition: when the program’s outcome changes as the
threads are scheduled differently

To control race conditions
Use synchronization to protect data conflicts

Synchronization is expensive so
Change how data is accessed to minimize the need for
synchronization

13

OpenMP synchronization constructsOpenMP synchronization constructs

Mutual exclusion:
C$OMP [END] CRITICAL [(name)]

Atomic execution:
C$OMP ATOMIC

Barrier synchronization:
C$OMP BARRIER

Ordered execution for loops:
C$OMP [END] ORDERED

fo
rk

jo
in

fo
rk

jo
in

critical
region

explicit
barrier

fo
rk

jo
in

explicit
barrier

Ordered
execution

#pragma critical [(name)]

#pragma atomic

#pragma barrier

#pragma ordered

Synchronization: CRITICAL sectionsSynchronization: CRITICAL sections

Only one thread at a time can enter a critical section

float res;

#pragma omp parallel

{ float B; int i;

#pragma omp for
for(i=0;i<niters;i++){

B = big_job(i);

#pragma omp critical
consum (B, RES);

}
}

Threads wait their
turn – only one at a
time calls consum

Threads wait their
turn – only one at a
time calls consum

14

Synchronization: ATOMIC accessSynchronization: ATOMIC access

Atomic is a special case of a critical section that can
be used for certain simple statements

It applies only to the access to a memory location (the
read and update of X in the following example)

Makes use of special instructions in the processor

C$OMP PARALLEL PRIVATE(B)
B = DOIT(I)

C$OMP ATOMIC
X = X + B

C$OMP END PARALLEL

Synchronization: BARRIERSynchronization: BARRIER

Each thread waits until all threads arrive

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++) C[i]=big_calc3(i,A);
#pragma omp for nowait

for(i=0;i<N;i++) B[i]=big_calc2(C,i);
A[id] = big_calc3(id);

}

implicit barrier at the end
of a for worksharing
implicit barrier at the end
of a for worksharing

No implicit barrier
due to nowait
No implicit barrier
due to nowaitImplicit barrier at the end of

parallel region
Implicit barrier at the end of
parallel region

15

Synchronization: ORDERED executionSynchronization: ORDERED execution

The ordered construct enforces the sequential order
for a block (in the example, following the
lexicographical iteration ordering)

#pragma omp parallel private (tmp)
#pragma omp for ordered

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}

Memory consistency: FLUSHMemory consistency: FLUSH

The flush construct denotes a sequence point where a
thread tries to create a consistent view of memory

All memory operations (both reads and writes) defined prior
to the sequence point must complete
All memory operations (both reads and writes) defined after
the sequence point must follow the flush
Variables in registers or write buffers must be updated in
memory

Arguments to flush specify which variables are
flushed

No arguments specifies that all thread visible variables are
flushed.

16

Memory consistency: FLUSHMemory consistency: FLUSH

This example shows how FLUSH is used to implement
pair-wise synchronization

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1 ! I’m all done; signal this to others

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

Make sure other threads can
see my write
Make sure other threads can
see my write

Make sure the read picks up
the latest copy from memory
Make sure the read picks up
the latest copy from memory

Dynamic work generation schemesDynamic work generation schemes

OpenMP has survived with no support for this kind of
parallelization strategies until now (version 2.5)

17

Dynamic work generation schemesDynamic work generation schemes

Decouples work generation and execution
One thread generates all work
Amount of work unknown Intel extension to 2.0

Another example: handling recursivityAnother example: handling recursivity

...
C$OMP SINGLE

CALL traverse(1, list, next)
C$OMP END SINGLE

...

SUBROUTINE traverse(i, list, next)
INTEGER i, list(100), next(100)
INTEGER res

C$OMP TASK
CALL compute(list, list(i), res)

C$OMP CRITICAL
total = total + res

C$OMP END CRITICAL
C$OMP END TASK

IF (next(i) .NE. 0) THEN
CALL traverse(next(i), list, next)

END IF
END OpenMP extension in 3.0

