◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Smith-Waterman Algorithm

AMPP 0708-Q1

Eduard Ayguade Juan J. Navarro Dani Jimenez-Gonzalez

October 4, 2007

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction

- Why compare sequences of aminoacids?
- How to compare sequences? Alignment
- Scoring the relationships
- How to find the best alignment?

Why compare sequences of aminoacids?

• Proteins are made by aminoacid sequences

t:cgggtatccaa

 $\bullet\,$ Similar sequences of aminoacids $\rightarrow\,$ similar protein structures

t:cgggtatccaa s:ccctaggtccca

• Evolutionary perspective: Mutations?, insertions?, etc.

•
$$t_1 = g$$
 mutated to $s_1 = c$?

- $s_1 = c$ has been an insertion?
- Some evolution are more important/likely than others

How to compare sequences? Alignment

An alignment of two sequences t and s must satisfy:

- All symbols (residues) in the two sequences have to be in the alignment, and in the same order they appear in the sequences
- We can align one symbol from one sequence with one from the another
- A symbol can be aligned with a blank ('-')
- Two blanks cannot be aligned

t:	С	g	g	g	t	а	t	С	С	а	а			
s:	с	с	с	t	a	g	g	t	с	с	с	a		
t:	с	g	g	g	t	a	-	-	t	-	с	с	a	a
s:	С	С	С	-	t	a	g	g	t	С	С	С	-	a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

What is the BEST alignment?

Exa	am	ple	è										
t:	с	g	g	g	t	a	t	с	с	a	a		
s:	с	с	с	t	a	g	g	t	с	с	с	a	
_	_	_	_	_	_	_	_	_	_	_	_		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

What is the BEST alignment?

Exa	am	ple	9												
t:	с	g	g	g	t	a	t	с	с	a	а				
s:	с	с	с	t	a	g	g	t	с	с	с	a			
t:	с	g	g	g	t	a	-	-	t	-	с	с	a	a	
s:	с	С	С	-	t	а	g	g	t	С	с	с	-	a	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the BEST alignment?

Exa	am	ple	9												
t:	с	g	g	g	t	a	t	с	с	a	a				
s:	с	с	с	t	a	g	g	t	с	с	с	a			
t:	с	g	g	g	t	a	-	-	t	-	с	с	a	a	
s:	с	С	С	-	t	a	g	g	t	С	с	с	-	a	
t:	с	g	g	g	t	a	-	-	-	t	с	с	a	a	
s:	с	С	-	-	С	t	a	g	g	t	с	с	С	a	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the BEST alignment?

Exa	am	ple	9												
t:	с	g	g	g	t	a	t	с	с	a	a				
s:	с	с	с	t	a	g	g	t	с	с	с	a			
t:	с	g	g	g	t	a	-	-	t	-	с	с	a	a	
s:	с	С	С	-	t	a	g	g	t	С	с	с	-	a	
t:	с	g	g	g	t	a	-	-	-	t	с	с	a	a	
s:	с	с	-	-	с	t	a	g	g	t	с	с	С	a	
t:	с	_	g	g	g	t	a	_	_	t	с	с	a	a	
s:	с	С	-	-	С	t	a	g	g	t	с	с	С	а	

Which is the best?

Scoring the relationships

- Needed a scoring matrix
- We will be able to find a optimal solution for the scoring matrix at hand

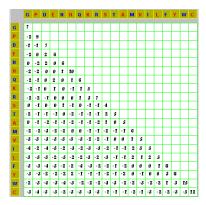


Figure: BLOSUM scoring matrix, S.

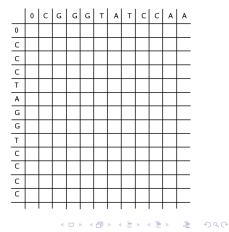
Outline

Smith-Waterman Algorithm 0000000

What is the BEST alignment (for that Score Matrix)?

Exa	mple														
t:	сg	gg	t a	t	с с	a	a								
s:	с с	c t	a g	g	t c	с	са								
t : s :	$\overset{c}{\overset{+12}{_c}}$	g -3 c	g -3 c	g -1 -	t + 5 t	а +5 а	- -1 g	- -1 g	t + 5 t	- -1 c	c + 12 c	c +12 c	а —1 —	а +5 а	45
t : s :					$t \\ -1 \\ c$										36
t : s :	c +12 c		g -1 -		g -3 c							c +12 c		а +5 а	47

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで


How to find the best alignment?

• Homology search methods begin with DP algorithms

- Needleman-Wusch: global search
- Smith-Waterman (SW): local search
- Faster but less sensitive for larger datasets
 - FASTA
 - BLAST
- Optimal spaced seeds of pattern-writer increase
 - Speed and sensitivity
 - Similar to SW
 - Examples: Pattern Hunter and BLAT
 - SW sensitivity
 - BLAST speed

- N x N integer matrix
- N is sequence length (both s and t)
- Compute *M*[*i*][*j*] based on Score Matrix and optimum score compute so far (DP)

Figure: Computation Matrix alginment, M

Outline	Introduction									Smit o●c			rma	n Alg	gorithr	n
Smith-Waterman	Algorithm:	Und	de	rst	an	di	'n	g	M	at	ri	x				
				0 C	G	G	G	т	A	т	с	с	A	A		
		-	0	0												
		-	с	0												
		_	с	0												
		_	с	0												
		-	_													

Alignment

t :	_	_	_	_	_	_	_	—
s :	С	С	С	t	а	g	g	t

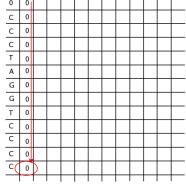


Figure: Aligning s to gaps

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 Dutline
 Introduction
 Smith-Waterman Algorithm

 000000
 000000

Smith-Waterman Algorithm: Understanding Matrix

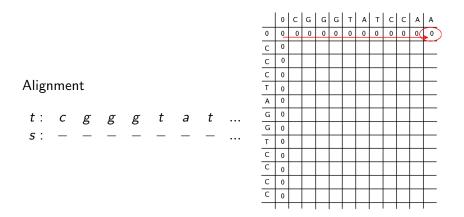
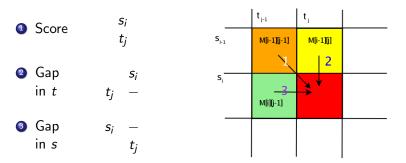
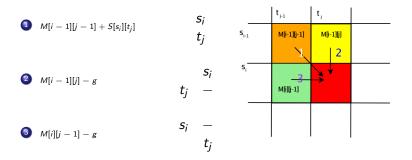
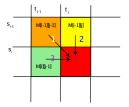



Figure: Aligning t to gaps

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで


Smith-Waterman Algorithm: How to compute cell score?

How to find M[i][j]? Three ways to finish the alignment of $s_{0..i}$ and $t_{0..j}$


Smith-Waterman Algorithm: How to compute cell score?

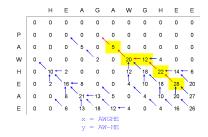
How to find M[i][j]? Three ways to finish the alignment of $s_{0..i}$ and $t_{0..j}$

Smith-Waterman Algorithm: Scoring Process

Element Computation M[i][j]:

$$M[i][0] = 0 \quad M[0][j] = 0$$

$$M[i][j] = \max \begin{cases} 0 \\ M[i-1][j-1] + S[s_i][t_j] & \text{if } s_i \ t_j \\ M[i-1][j] - d & \text{if } s_i - d \\ M[i][j-1] - d & \text{if } s_i - d \\ M[i][j-1] - d & \text{if } s_i - d \\ M[i][j-1] - d & \text{if } s_i - d \\ M[i][s_i] = 0 \end{cases}$$


イロト 不得 とうせい かけいしゅ

Smith-Waterman Algorithm: Backtracking Process

If we want to find **BEST** local alignment...

• Find Score_{opt} and then traceback

$$Score_{opt} = \max_{i,j=1}^{N} M[i][j]$$

