Execution Environments for Parallel Applications

Outline
- Supercomputers
- OS abstractions
- Tools for performance analysis
- Extended OS interfaces
 - IRIX sysmp
 - IRIX memory placement
- Example: the CPU Manager
- Linux interfaces
- Conclusions

Tools for Performance Analysis

Hardware Performance Counters
- Capable of tracking up to 50 counters at the same time
- Counting
 - Events
 - Cycles an event is active
- Classification of counters
 - Double hummer
 - L3 cache
 - Prefetch unit
 - Tree network
 - Torus network
Hardware Performance Counters

- For each component of the BG/L chip, except the ppc440 macros

![Image of BG/L chip components](image1.png)

Hardware Performance Counters

- Counters on the torus network
 - 32-byte chunks sent (or passing-through)
 - Packets sent (or passing-through)
 - Acknowledgments sent
 - Link available, no tokens
 - On the different channels
 - Token with ack sent
 - ... and more

- For each dimension and direction
 - total of 6 in a 3D torus/mesh

- Similar counters for the tree network

Hardware Performance Counters

- Double Hummer
 - ADD/SUBTRACT
 - MULT/DIV
 - MULTIPLYADD
 - DOUBLE_LOAD, DOUBLE_STORE
 - QUAD_LOAD, QUAD_STORE
 - ...

![Image of Double Hummer](image2.png)

Hardware Performance Counters

- L3 cache & prefetch unit
 - HIT
 - MISS_DATA_COMING
 - MISS_DATA_REQUEST
 - EVICT_LINE
 - PREFETCH_REQUEST
 - RD_BURST_1024B
 - RD_MODIFY_WR_CYCLE
 - ...

![Image of L3 cache & prefetch unit](image3.png)
Collecting traces on BG/L

- MPI trace tool is linked with the application
 - Based on the PMPI interface
- PAPI for BG/L is used to collect hardware performance counters
- A single file per node is generated during the execution
- All intermediate files are merged into a single Paraver trace
 - example.prv contains the Paraver trace
 - example.pcf contains textual information
- Visualization with Paraver

Collecting traces on BG/L

- Linpack on 32 nodes
 - 8x4 (N=40960)
- Only the first 3 iterations
- Long start and end phases
- Different communication patterns

Collecting traces on BG/L

- State information
- Event information
 - Total cycles
 - 32-byte chunks sent in each dimension
 - Including pass-through
 - MPI
 - point-to-point comm
 - collective comm

Zooming communication regions

- Single iteration
 - Initial barrier
 - Pivoting
 - Group broadcast
 - Column broadcast
 - Final phase
Exchange phase

- Different nodes take different amount of time

Communication on the X dimension

- Using the 32-byte chunks counter on XP and XM
- None!
- The XM & XP links are unused in this phase

Communication on the Y dimension

- Using the 32-byte chunks counter on YP and YM
- Heavy load

Communication on the Z dimension

- Using the 32-byte chunks counter on ZP and ZM
- Unbalanced load
Adding

- Y and Z dimensions

Adding (2)

- Bytes send on YZ dimensions

Gradient visualization

- Increases readability
- More intuitive representation

How to verify the results of the counters?

- Hardware performance counters are not a priority for testing

- Can we find a different way of measuring the “bytes sent” in order to compare?
 - Paraver can represent “bytes sent” per node from the information in the trace (without the need of hardware counters)
Verifying...

- Different?
- Different metrics?

Based on the MPI communication

Based on the hardware counters

Mapping is important!

- 32 nodes are organized like 4x4x2
- 128, as 4x4x8

Broadcast on a mesh (torus)

Based on ideas from Vernon Austel, John Gunnels, Phil Heidelberger, Nils Smed: Implemented & measured by Nils Smed
3D Visualization

- **Physical 3D structure (128 nodes)**
 - Spatial localization of bottlenecks

Impact of MsgLayer Support

- **Linpack**
 - Initial barrier
 - Pivoting
 - Group broadcast
 - Column broadcast

Impact of MsgLayer Support

- **Different implementations of broadcast**
 - Why are they showing so many differences?
 - Which one is better and when?

Impact of MsgLayer Support

- **Sending messages**
 - Overlapping messages
 - Several messages at the same time
 - to the same destination
 - using the same output links
 - Packets picked up from the available messages in a round-robin fashion
 - One message at a time, FIFO mode, per direction
 - Up to 6 messages in parallel, using different links
Impact of MsgLayer Support

- **Sending messages**
 - Overlapping messages

[Diagram showing a network with nodes and connections]

- **Sending messages**
 - One message at a time in each direction

[Diagram showing a network with nodes and connections, indicating queuing and messages]

Impact of MsgLayer Support

Analyzing System Performance

- **Solving implementation “bugs”**

[Diagram showing system performance metrics and analysis]
Scalability

- 65536 nodes are a challenge
 - Number of intermediate files
 - Maximum file size
- Restrict both space and time of tracing
 - Select representative nodes while trying smaller configurations

512 nodes

- This trace represents a microbenchmark to measure the bandwidth obtained from the torus network
- Only 7 nodes are really used in a 512-node system

512 to 7

- Displaying the “interesting nodes”
Packetization and alignment

Problem: Torus hardware only handles 16 byte aligned data

- When sender/receiver alignments are the same:
 - head and tail transmitted in a single “unaligned” packet
 - aligned packets go directly to/from torus FIFOs
- When alignments differ, extra memory copy is needed

The cost of packet realignment

- **The cost (cycles) of reading a packet from the torus into unaligned memory**

- Non-aligned receive
- Receive + copy
- Ideal

Dept. d’Arquitectura de Computadors
Estudis Operatius per la Gestió de Recursos