Lectures

1. System administration introduction
2. Operating System installation
3. User management
4. Application management
5. System monitoring
6. Filesystem Maintenance
7. Local services
8. Network services
9. Security and Protection
10. Virtualization
Outline

1. Introduction
 - Goals
 - Previous Considerations
 - Network Address Translation
 - Firewall

2. Servers

3. Services
Goals

Knowledge

- Main services and networking protocols
 - Superserver, portmapper, DNS, FTP, WWW, e-mail

Abilities

- Service configurations
 - Superserver
 - DNS
 - FTP
 - WWW
 - E-Mail
Network admin considerations (I)

Security measures

- Never execute services with superuser privileges
- Expose only necessary services – firewalls
- Configure carefully all the offered services
 - Never leave default configurations
 - Disable/Remove unused services
- Monitor the service’s logs
- Check for security issues – be up to date
Network admin considerations (and II)

Port classification

- Privileged ports: 0 - 1023
 - Controlled and assigned by IANA
 - Only privileged users (root) may install services to those ports
- Registered ports: 1024 - 49151
 - Not controlled but registered by IANA
 - Registry about services using those ports – /etc/services
- Dynamic ports: 49152 - 65535
 - Used for temporary connections
/etc/services

- Relates services with corresponding port number
- various applications use it (netstat, ...)

<table>
<thead>
<tr>
<th>servicename</th>
<th>port/protocol</th>
<th>alias list</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo</td>
<td>7/tcp</td>
<td></td>
</tr>
<tr>
<td>echo</td>
<td>7/udp</td>
<td></td>
</tr>
<tr>
<td>systat</td>
<td>11/tcp</td>
<td>users</td>
</tr>
<tr>
<td>systat</td>
<td>11/udp</td>
<td>users</td>
</tr>
<tr>
<td>ftp-data</td>
<td>20/tcp</td>
<td></td>
</tr>
<tr>
<td>ftp-data</td>
<td>20/udp</td>
<td></td>
</tr>
<tr>
<td># 21 is registered to ftp, but also used by fsp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftp</td>
<td>21/tcp</td>
<td></td>
</tr>
<tr>
<td>ftp</td>
<td>21/udp</td>
<td>fsp fspd</td>
</tr>
<tr>
<td>ssh</td>
<td>22/tcp</td>
<td></td>
</tr>
<tr>
<td>ssh</td>
<td>22/udp</td>
<td></td>
</tr>
<tr>
<td>telnet</td>
<td>23/tcp</td>
<td></td>
</tr>
<tr>
<td>telnet</td>
<td>23/udp</td>
<td></td>
</tr>
<tr>
<td># 24 - private mail system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smtp</td>
<td>25/tcp</td>
<td>mail</td>
</tr>
<tr>
<td>smtp</td>
<td>25/udp</td>
<td>mail</td>
</tr>
<tr>
<td>domain</td>
<td>53/tcp</td>
<td></td>
</tr>
<tr>
<td>domain</td>
<td>53/udp</td>
<td></td>
</tr>
<tr>
<td>http</td>
<td>80/tcp</td>
<td>www www-http</td>
</tr>
<tr>
<td>http</td>
<td>80/udp</td>
<td>www www-http</td>
</tr>
</tbody>
</table>
Router translates internal addresses by one (or various) of its own
- Allows using a reserved IP (pool) and keep connectivity to the outside

The router remembers the output connections to identify its answers
- Output connection:
 - 192.168.1.25 (port 1085) → 212.106.192.142 (11086)
- Reply connection:
 - 212.106.192.142 (11086) → 192.168.1.25 (1085)

Tools: iptables (SNAT), dnsmasq
NAT collateral effects

- Private addresses are not visible from the outside
 - Attacks may only fall to the router – except over ongoing connections
- Network security depends on router security
- Internal machines cannot offer services to the outside
 - Except when using Port Address Translation (PAT)
- Important performance penalty for the network
 - All external connections go through a single router
 - Each packet requires some CPU time for processing
- Some services do not behave properly when using NAT
 - Those establishing connections to the inside
 - FTP, IRC, Netmeeting, ...
Port Address Translation (PAT)

- Indicate to the NAT router it must forward some input connections to a particular machine
- Map router ports to some internal machine

Eines: `iptables` (DNAT)
Firewall

Server that determines which connections may be established between two networks

- It typically works at network and transport layers
 - In general application details are not known
- It can keep connection status (Connection Tracking)
 - It allows related connections: “replies“
Firewall == Security?

- A firewall is another piece of the overall security of a system.
- Its use can potentially offer a false security feeling.
- Other aspects cannot be neglected:
 - Correct application configuration
 - Perform regular security updates on installed software
 - Limit concurrent connections
- Other security tools in the private network and servers are still necessary.
Outline

1. Introduction
2. Servers
 - Server types
3. Services
Server types

- Connection oriented
 - The server keeps status about the different sessions
 - Better performance
 - Less error resilience

- Connectionless
 - There is no status about the client connections
 - There are no sessions
 - Requests must be self contained
 - Client request must contain all the required information
 - Better failure resilience and recovery
Server types – Depending authority

- **Primary**
 - They keep a copy of all the information
 - If there is mismatch in the stored information the primary takes precedence
 - There is one per service

- **Secondary**
 - Keep copies of the information
 - Performing periodic updates with the primary
 - There can be more than one per service
 - Load balancing
 - Are an implicit backup of the primary

- **Cache (and/or proxies)**
 - Keep –partial– copies of the most used information
 - More than one per service
 - Better performance
 - They can add security checks, filtering, log, ...
Outline

1. Introduction

2. Servers

3. Services
 - Remote Procedure Calls (RPC)
 - Domain Name System (DNS)
 - Dynamic Host Configuration Protocol (DHCP)
 - Hypertext Transfer Protocol (HTTP)
 - File Transfer Protocol (FTP)
 - Simple Mail Transfer Protocol (SMTP)
 - E-mail reception
 - Secure Shell
 - Network File System (NFS)
 - Samba (SMB)
Superserver

- A service even when idle uses resources
 - Many services are requested only from time to time: telnet, ftp, ssh, ...
- Superserver listens to all the ports and activates the service only when needed
 - It detects the request
 - Initiates the service
 - Passes the message

- Limitations
 - Between connections it is not possible to keep information in memory
 - Overhead caused by process creation

Implementations: inetd, xinetd
Indicates the services offered by the superserver

Service, Protocol, User/group, Server, Parameters

```
$ cat /etc/xinetd.conf
includedir /etc/xinetd.d

$ cat /etc/xinetd.d/ftp
service ftp
{
    socket_type  = stream
    wait         = no
    user         = root
    server       = /usr/sbin/vsftpd
    log_on_success += HOST DURATION
    log_on_failure += HOST
    disable      = no
}
```
Remote Procedure Calls (RPC)

- Remote subroutine invocation
 - Identified by a service number ID
- RPC Servers
 - They implement a set of remote connections
 - Listen in a dynamic port
- Portmapper
- Registers the RPC servers
 - Maps the port with the subroutines
- Needed by other services
 - NFS, ...
Portmapper

- All the status is kept on memory
 - If the process fails, it is not enough restarting it
 - All RPC servers must be restarted
- All services must be registered upon portmapper start
Domain Name System (DNS)

- Name resolution service
 - Hostname \rightarrow IP address
 - IP Address \rightarrow hostname

- Issues
 - Large amount of machines
 - Large number of changes

- Solution
 - Hierarchical distribution of the information (domains)
 - Authority delegation
Introduction

Servers

Services

DNS Internals

Authority delegation

- Each domain administers its own server
- Everybody knows the higher servers in the hierarchy (root)
- Everybody knows the server for their domain
- Name resolution is iterative

/etc/resolv.conf:
search ac.upc.edu
nameserver 147.83.33.45

DNS: RFCs 1034/1035

R. Serral-Gracià, et. al

Networks
Service performance

Using "caches" is convenient

- High temporal locality
 - Avoids repeating the same query

- High spacial locality
 - Avoids going up to the root servers too often
 - Avoids some steps of the iterative search

DNS can be used for load balancing

- We can have several IPs for the same name
 - Each query returns different values: Round Robin or "geographical" criteria

$ nslookup www.google.com
Name: www.google.com
Address: 212.106.221.23
Name: www.google.com
Address: 212.106.221.27
Name: www.google.com
Address: 212.106.221.25
...
DNS client configuration

- `/etc/host.conf`
 - Where a name is searched and its order

- `/etc/hosts`
 - Locally translated machines

- `/etc/resolv.conf`
 - Automatic domains to be searched
 - IP addresses of the DNS servers
DNS Server configuration

/etc/bind/named.conf
- What are we administering?
 - DNS Domains
 - IP addresses ranges
 - Indicates primary, secondary, or cache

Direct translation files
- Name.domain → IP address
 - 1 file for each administered domain

Inverse translation file
- IP Address → name.domain
 - 1 file for each administered IP range
DNS type of registers

- **SOA (Start of Authority)**
 - Serial number
 - Refresh time and retries
 - Expiration times
 - Minimum TTL

- **A - Direct translation**
 - Name → IP address
 - romeu IN A 147.83.32.4

- **CNAME - synonyms**
 - Name → name
 - romeu IN CNAME lp_romeu
DNS type of registers

- **PTR** - inverse translation
 - IP Address → DNS name

 4 IN PTR romeu.ac.upc.edu.

- **NS** - Domain delegation
 - DNS Domain → server

 ac IN NS 147.83.32.3

- **MX** - mail exchanger
 - DNS Domain → server

 ac IN MX 147.83.33.10

- I altres...
 - HINFO, WKS, ...
DNS configuration example

```
$ cat /etc/bind/named.conf
options {
    directory "/var/cache/bind";
    forwarders {
        147.83.159.217;
    };
    auth-nxdomain no;  # conform to RFC1035
    listen-on-v6 { any; };
};
zone "cluster.craax.upc.edu" {
    type master;
    file "/etc/bind/cluster.zone";
};

zone "1.1.10.in-addr.arpa" {
    type master;
    file "/etc/bind/cluster.rev";
};
```
DNS configuration example

```
$ cat /etc/bind/cluster.zone
$TTL 604800
@ IN SOA cluster. cluster.craax.upc.edu. ( 20101220 ; Serial
                                           604800 ; Refresh
                                           86400 ; Retry 
                                           2419200 ; Expire
                                           604800 ) ; Negative Cache TTL
;
@ IN NS gandalf
$ORIGIN cluster.craax.upc.edu.
gandalf IN A 10.1.1.1
boromir-1 IN A 10.1.1.2
```

```
$ cat /etc/bind/cluster.rev
$TTL 604800
@ IN SOA cluster. cluster.craax.upc.edu. ( 20101220 ; Serial
                                           604800 ; Refresh
                                           86400 ; Retry 
                                           2419200 ; Expire
                                           604800 ) ; Negative Cache TTL
;
@ IN NS gandalf
$ORIGIN cluster.craax.upc.edu.
s 1 IN PTR gandalf.cluster.craax.upc.edu.
2 IN PTR boromir-1.cluster.craax.upc.edu.
```
Exercise

- We have 3 services at (server1, server2, server3) with these registers

<table>
<thead>
<tr>
<th>Server</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>server1</td>
<td>123.123.123.1</td>
</tr>
<tr>
<td>server2</td>
<td>123.123.123.2</td>
</tr>
<tr>
<td>server3</td>
<td>123.123.123.3</td>
</tr>
</tbody>
</table>

- We want to add the following services
 - www at server1 (server2 is the backup server)
 - ftp at server1 and server2
 - incoming/outgoing mail at server3

Which registries would you add?
DNS Related tools

- **whois domain**
 - Provides contact information for a domain

- **dig [@server] query**
 - Performs a DNS query
 - It allows controlling different resources
 - Server, type of register, iterative/recursive resolution, ...
 - Returns the registers corresponding to the query
 - It supports debugging
Dynamic Host Configuration Protocol (DHCP)

- It delivers automatically the network configuration to a host
 - IP assignment, Gateway and DNS
- Machine trustfulness is not verified
 - By default it is assumed that if the host can reach connectivity then it is legitimate
 - It can provide MAC address verification
- IP addresses are assigned from a predefined range
Dynamic Host Configuration Protocol (DHCP)

Remote boot support through BOOTP and PXE

- Preboot Execution Environment (PXE)
- Network card uses BIOS to get network information
- It allows to decide the kernel image to boot
 - Downloaded through TFTP
 - A remote root system can be mounted
Dynamic Host Configuration Protocol (DHCP)

For `/etc/resolv.conf`
- ddns-update-style none;
- option domain-name-servers 192.168.1.1;

For PXE
- allow booting;
- allow bootp;
- default-lease-time 600;
- max-lease-time 7200;
- authoritative;

- subnet 192.168.1.0 netmask 255.255.255.0 {
 - range dynamic-bootp 192.168.1.172 192.168.1.254;
 - range 192.168.1.2 192.168.1.171;
 - filename "pxelinux.0";
}

For `ifconfig`
- option subnet-mask 255.255.255.0;
- option broadcast-address 192.168.1.255;
- option routers 192.168.1.1;

For `route`
- option default-gateway 192.168.1.1;
Dynamic Host Configuration (DHCP)

DHCP and DNS can work together

/etc/dhcpd/dhcpd.conf

```
ddns-update-style interim;
key DHCP_UPDATER {
    algorithm HMAC-MD5.SIG-ALG.REG.INT;
    secret pRP5FapFoJ95JEL06sv4PQ==;
};
zone ac.upc.edu. {
    primary 192.168.1.1;
    key DHCP_UPDATER;
}
```

/etc/bind/named.conf

```
key DHCP_UPDATER {
    algorithm HMAC-MD5.SIG-ALG.REG.INT;
    secret pRP5FapFoJ95JEL06sv4PQ==;
};
zone ac.upc.edu. {
    type master;
    file "ac.zone";
    allow-update { key DHCP_UPDATER; }
};
...
Exercise

In group

- Which potential problem can be caused by a DHCP server crash?
- Propose an implementation to solve it
Hypertext Transfer Protocol (HTTP)

- Data transfer service
- Connectionless
  - There is no state between connections
  - Each petition is self-contained
- Nevertheless it uses TCP

**Diagram:**

- Client
  - connect/accept
  - GET /path/to/file
  - transfer file contents
- httpd
Apache Web Server

- Implements support for HTTP
- `/etc/apache/httpd.conf`

Main features

- Unprivileged user execution
- Queries are served using memory separated processes/threads
  - Memory sharing configurable by the administrator
  - Maximum concurrent processes limit
- Configuration options in a per directory basis
- Virtual Host configuration
  - By IP address
  - By DNS name
File Transfer Protocol (FTP)

- Data transfer service
- Connection oriented
- Control connection
  - There is state between connections: `cwd`
- Data connection
  - active: does not support NAT
  - passive: NAT is supported
  - There is a new data connection per transfer
There are many server implementations

- `wu-ftpd`, `proftpd`, `vsftpd`, ...

User level based authorization: `/etc/ftpusers`

- List of the users that **CAN’T** access FTP

Use `chroot` for security in Anonymous FTP

- Changes the root of the process
- Extra configuration
- Requires install basic commands and configuration files
  - `/etc/passwd`, `/etc/shadow`
  - `/bin/ls`, `/lib/libc.so`, ...

- Use it even for regular users
Simple Mail Transfer Protocol (SMTP)

Parts composing the mail system

- **MUA - Mail User Agent**
  - User application to read/write e-mails

- **MSA - Mail Submission Agent**
  - Application to transmit the mail from the client to the MTA
  - It makes all previous error checking

- **MTA - Mail Transport Agent**
  - It sends the e-mail between servers

- **Delivery Agent**
  - Application to store mails into the user’s mailbox
  - Sometimes the mails are stored into a database

- **Access Agent**
  - Application allowing the user to access its e-mail
Mail system components

Client de mail Complet

Servidor de Mail (SMTP)

Servidor de Mail (SSMTP)

Mail Classification

Mail Storage

Client de Mail Simple

Client de Mail Complet

SSMTP

SMTP

MTA

MTA

SMTP

SMTP

SMTP

SSMTP

MSA

POP3/IMAP

mbox

AA/MUA

MUA

R. Serral-Gracià, et. al

Networks
Internals of an e-mail

- **Envelope**
  - Message destination
  - Source
  - Not received by the clients – only for servers

- **Headers**
  - Set of message properties
    - Sending date
    - Source and destination (shown by the e-mail clients)
    - List of servers the message has crossed

- **Message body**
  - Uses 7 bits ASCII
  - Attachments use Base-64
Mail client configuration

**Mail reception**

- Access to local mailbox
  - Mailbox/maildir format interpreter
- Remote mailbox access
  - POP3
  - IMAP

**Mail sending**

- Using an SMTP server
E-Mail server configuration

Mail sending – sendmail/postfix

- Sending direct to the destination
  - Search for MX record in DNS – local destination
- Sending through a Relay
  - No direct access to the destination

Mail reception

- Store the mails locally
  - POP3, DIMAP
- Store the mails in the remote server
  - IMAP
Mail aliases

- Redirect mail to other users
  - In a remote machine
- Users with multiple names
  - `root, postmaster, webmaster → usuari@host`
- Send a mail to a file instead of a user
  - `spam: /dev/null`
- Send the e-mail to a program
  - `autoftp: "| /usr/bin/ftpserver"`
- Mailing list definition
  - Is better to use: Majordomo, Mailman, ListProc, SmartList, ...

Aliases defined in `/etc/aliases` or `/etc/mail/aliases`
Security considerations

User authentication

- By default the server does not ask for credentials
  - SASL can be used
- Envelope can be forged — SPAM . . .
- Trust mail relays
  - The server always tries to send the message
  - Even if the headers do not belong to the domain (Open Relays)
Security considerations

Mail privacy

- Mail is sent in plain text
  - Use of TLS (SSL) only between MUA and MTA
- PGP - Pretty Good Privacy
  - Message cyphering and signing
  - Based in public key cryptography
- S/MIME

Filter installation

- Anti-spam
  - Spamassassin, gray lists, black lists, ...
- Anti-virus
  - Clam AV, Amavis, f-prot,...
We just set up a filter to control spam

- Which action would you take as a server when you detect a spam message?
- And if the filter is an anti-virus?
E-mail reception

Post Office Protocol (POP)

- It allows users to access their mailbox
- It downloads the messages to the local machine
- Authentication without encryption
  - `pop3s` secure alternative using SSL

Internet Message Access (IMAP)

- It allows users to manage their mailbox
- Management is performed remotely
- User authentication
  - Allowing encryption
- `imaps` even more secure alternative using SSL
Secure Shell

- It substitutes rsh/rlogin and telnet
- Adding security
  - It performs authentication based on RSA, DSA, ECDSA
  - Session key is signed by the client's private key
  - The server uses the public key as stored in (.ssh/authorized_keys) to check if the signature is correct
  - password based authentication is also supported
- Connection is fully encrypted
  - Confidentiality: 3DES, Blowfish, ...
  - Integrity: hmac-md5, ...

- The server runs the specified command or offer a shell
- Transparent session
  - Whenever a pseudo-terminal is not requested
  - It can be used to transfer binary files
- login Session
  - X11 Protocol forwarding can be configured
Exercise – In group

Secure Shell actions

How would you implement secure copy and secure FTP directly with ssh?
Network File System (NFS)

- File access in a remote server
  - Keeping the semantics (privilege wise) of the local filesystem
- It is transparent to the user
  - Implemented using RPC’s

```
open/close
read/write
```

![Diagram of NFS architecture with OS, NFS Client, NFS Server, and shared disk]
Remote mounting for NFS

The mounted directory is presented as local
**Access privileges**

- **UIDs in the remote machines must be the same as used in local**
  - Filesystems store UID rather than usernames
  - This can be adapted by using `idmapd`

- **UID automatic translation (idmapd)**
  - `root`, `nobody`

- **Options**
  - `no_root_squash`, `root` can `su` to any user!
  - `all_squash`, **all users become nobody**
  - We can decide who `nobody` is

```
anonuid=UID, anongid=GID
```
NFS Configuration

- Determine which resources to export
- Hosts to export to
- Configuration flags

/etc/exports

<table>
<thead>
<tr>
<th>Path</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>master(rw) trusty(rw,no_root_squash)</td>
</tr>
<tr>
<td>/projects</td>
<td>proj*.local.domain(rw)</td>
</tr>
<tr>
<td>/usr</td>
<td>*.local.domain(ro) @trustedgroup(rw)</td>
</tr>
<tr>
<td>/home/joe</td>
<td>pc001(rw,all_squash,anonuid=150,anongid=100)</td>
</tr>
<tr>
<td>/pub</td>
<td>(ro,insecure,all_squash)</td>
</tr>
</tbody>
</table>
SMB — Samba

- It allows sharing files and printers
- User level access control
  - Authentication using login and password
    - Based on username not UID
    - Encrypted and plaintext password transmission
  - Machine based access restriction
    - It does not allow to change permissions depending on the source
    - One must use different share names
Lightweight Directory Access Protocol (LDAP)

- It provides access to users database
  - Directory format (X.500)
- It offers user authentication methods
  - `/etc/passwd`, `/etc/shadow`, `/etc/group`, ...
  - ... they can be dumped to the LDAP database
- Besides regular files, login can also be controlled through the database
Virtual Private Networks (VPN)

- Server and client negotiate a secure connection
- An internal IP is offered through a secure tunnel
  - It grants access to all the internal services